МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой физической химии

О.А. Козадеров

12.04.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.11 Физическая химия

- 1. Код и наименование направления подготовки/специальности: 04.03.01 Химия
- 2. Профиль подготовки/специализация: Химия
- 3. Квалификация выпускника: Бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины: 1004 физической химии
- 6. Составители программы: Козадеров Олег Александрович, д.х.н., доц., Грушевская Светлана Николаевна, к.х.н., доц.
- 7. Рекомендована: НМС химического факультета от 11.04.2024, протокол №4

8. Учебный год: 2025/2026 Семестры: 3,4

9. Цели и задачи учебной дисциплины

Целями освоения учебной дисциплины являются:

- формирование системы знаний о фундаментальных законах протекания физико-химических процессов и химических реакций.

Задачи учебной дисциплины:

- дать основы химической и электрохимической термодинамики;
- познакомить с учением о химическом и фазовом равновесии;
- дать основы учения о растворах, включая растворы электролитов;
- познакомить с основными понятиями и законами химической и электрохимической кинетики;
- вскрыть закономерности процессов массопереноса в физико-химических системах.

10. Место учебной дисциплины в структуре ООП:

обязательная часть блока Б1

Требования к входным знаниям, умениям и навыкам: уметь дифференцировать и интегрировать элементарные функции, знать специальные интегралы, основы линейной алгебры, молекулярной физики и классической термодинамики.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК -1	Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений	ОПК-1.1	Систематизирует и анализирует результаты химических экспериментов, наблюдений, измерений, а также результаты расчетов свойств веществ и материалов	Знать: основы физической химии; Уметь: применять теоретические основы термодинамики и кинетики при решении профессиональных задач; Иметь навыки: использования теоретических основ физической химии при решении экспериментальных задач.
		ОПК-1.2	Предлагает интерпретацию результатов собственных экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии	
		ОПК-1.3	Формулирует заключения и выводы по результатам анализа литературных данных, собственных экспериментальных и расчетно-теоретических работ химической направленности	
ОПК -2	Способен проводить с соблюдением	ОПК-2.1	Работает с химическими веществами с соблюдением норм	Знать: теоретические основы экспериментальных физико-химических и электрохимических методов; правила
	норм техники		техники безопасности	техники безопасности при работе в

		1	<u></u>	
	безопасности химический эксперимент, включая синтез, анализ, изучение структуры и свойств веществ и	ОПК-2.2	Проводит синтез веществ и материалов разной природы с использованием имеющихся методик	химической лаборатории; Уметь: использовать теоретические основы физической химии при решении практических задач; применять средства индивидуальной защиты;
	материалов, исследование процессов с их участием	ОПК-2.3	Проводит стандартные операции для определения химического и фазового состава веществ и материалов на их основе	Владеть: основными экспериментальными методами физической химии и электрохимии; базовыми приемами предупреждения и ликвидации последствий аварийных ситуаций.
		ОПК-2.4	Проводит исследования свойств веществ и материалов с использованием серийного научного оборудования	
ОПК -3	Способен применять расчетно- теоретические методы для изучения свойств веществ и	ОПК-3.1	Применяет теоретические и полуэмпирические модели при решении задач химической направленности	Знать: теоретические основы базовых методик физико-химического анализа; Уметь: реализовать на практике основные методики физико-химического анализа;
	процессов с их участием с использованием современной вычислительной техники	ОПК-3.2	Использует стандартное программное обеспечение при решении задач химической направленности	Владеть: базовыми методиками химической и электрохимической термодинамики.
ОПК -6	Способен представлять результаты своей работы в устной и письменной форме в соответствии с	ОПК-6.1	Представляет результаты работы в виде отчета по стандартной форме на русском языке	Знать: основные формы самостоятельной работы с учебной литературой; Уметь: систематизировать знания, полученные в ходе аудиторных занятий;
	нормами и правилами, принятыми в профессионально м сообществе	ОПК-6.2	Представляет информацию химического содержания с учетом требований библиографической культуры	Владеть: основными методами представления результатов работы в виде отчета на русском и английском языках.
		ОПК-6.3	Представляет результаты работы в виде тезисов доклада на русском и английском языке в соответствии с нормами и правилами, принятыми в химическом сообществе	
		ОПК-6.4	Готовит презентацию по теме работы и представляет ее на русском и английском языках	

ı					
	ПК-	Способен	ПК-1.1	Обеспечивает сбор	Знать: источники научно-технической
	1	проводить сбор,		научно-технической	(научной) информации;
		анализ и		(научной) информации,	
		обработку научно-		необходимой для	Уметь: осуществлять поиск научно-
		технической		решения задач	технической (научной) информации с
		(научной)		исследования,	использованием ресурсов сети
		информации,		поставленных	Интернет, баз данных; оформлять отчет
		необходимой для		специалистом более	о результатах поиска информации;
		решения задач		высокой квалификации	
		химической		, .	Владеть: приемами поиска научно-
		направленности,	ПК-1.2	Составляет	технической (научной) информации и
		поставленных		аналитический обзор	методами составления отчетов о
		специалистом		литературных	результатах поиска, навыками
		более высокой		источников по заданной	проведения химического эксперимента,
		квалификации		тематике, оформляет	обобщения и оформления его
		квалификации		отчеты о выполненных	результатов.
				научно-	podynara.
				исследовательских	
				работах по заданной	
				I -	
				форме	

12. Объем дисциплины в зачетных единицах/час. — 15/540.

Форма промежуточной аттестации зачет, экзамен

13. Трудоемкость по видам учебной работы

		Трудоемкость			
Вид уче	бной работы	Всего		По семестрам	
	,		3	4	
Аудиторные заняти	Я	340	170	170	
	лекции	122	68	54	
D TOM LUADED:	практические	-	-	-	
в том числе:	лабораторные	210	102	108	
		136	82	54	
в том числе: курсовая работа (проект)				+	
Форма промежуточной аттестации		72	36	36	
V	1того:	540	288	252	

13.1. Содержание дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн- курса, ЭУМК
		1. Лекции	
1.1	Первый закон термодинамики. Термохимия.	Предмет, задачи, методы и разделы физической химии. Термодинамический метод исследований. Химическая термодинамика. Термодинамические системы. Термодинамические параметры состояния системы. Уравнение состояния. Уравнение состояния идеального газа. Коэффициент сжимаемости. Вириальное уравнение состояния. Уравнение Ван-дер-Ваальса. Критическая температура. Принцип соответственных состояний. Внутренние и внешние параметры. Обобщенные силы и обобщенные координаты. Экстенсивные и интенсивные параметры. Теорема Эйлера. Парциальные молярные величины. Постулат о термодинамическом равновесии. Нулевой закон термодинамики. Термодинамический процесс. Самопроизвольные	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899

1.2	Второй закон термодинамики. Энтропия и термодинамически е потенциалы химических реакций	равновесные и неравновесные, обратимые (квазистатические) и необратимые процессы. Функции состояния и функции процесса. Постулат о существовании внутренней энергии. Теплота и работа. Первый закон термодинамики. Эквивалентность различных способов передачи энергии. Работа и теплота обратимого и необратимого процессов. Теплоемкость. Применение первого закона к простейшим процессам с участием идеального газа. Энтальпия. Применение первого закона термодинамики к многокомпонентным закрытым системам. Химическая переменная. Калорические коэффициенты. Истинный и средний тепловой эффект химической реакции. Термохимия. Стандартные состояния. Закон Гесса и спедствия из него. Стандартные энтальпии образования и сгорания веществ. Калориметрия. Зависимость теплового эффекта химической реакции от температуры. Уравнение Кирхгофа: приближенное и точное решение. Степенные ряды теплоемкости. Направление самопроизвольных процессов. Постулат Томсона. Некомпенсированная теплота Клаузиуса. Принцип адиабатной недостижимости Каратеодори. Постулат о существовании энтропии функции состояния и обобщенной силы в процессах теплообмена. Уравнение второго закона термодинамики для обратимых и необратимых процессов. Принцип возрастания энтропии. Статистическое толкование второго закона термодинамики. Термодинамическая вероятность. Уравнение Больцмана. Расчет изменения энтропии в различных процессах. Абсолютная энтропии в различных процессах. Абсолютная энтропии в различных процессах. Абсолютная энтропии в различных процессах аменения энтропии. Статистическое толкование второго закона термодинамики. Термодинамическая вероятность. Уравнение Больцмана. Расчет изменения энтропии в различных процессов и равновесия в закрытых системах. Состношения Максвелла. Уравнение Клапейрона-Клаузиуса. Термодинамические потенциалы идеального и реального газов. Уравнение Гиббса-Дюгема. Летучесть. Энергия Гиббса химической реакции. Термодинамические потенциалы. Уравнения Гиббса-Дюгема.	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
1.3	Термодинамика	Гельмгольца. Расчет энергии Гиббса химической реакции. Термодинамическая классификация растворов.	УЭМК «Физическая
	растворов и фазовых равновесий	Идеальные растворы. Предельно разбавленные, атермальные, регулярные растворы. Химический потенциал. Уравнение Гиббса-Дюгема. Законы Рауля и Генри. Активность. Коэффициент активности. Равновесие жидкость-пар. Законы Гиббса-Коновалова. Перегонка. Коллигативные свойства растворов. Законы растворимости. Уравнение Шредера. Закон Нернста. Экстракция. Криоскопия. Эбулиоскопия. Осмотические явления. Уравнение Вант-Гоффа. Основные понятия термодинамики фазовых равновесий. Составляющая и компонент. Фаза. Уравнение	химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
		состояния фазы. Условие фазового равновесия.	

		Вывод правила фаз Гиббса и вариантность системы. Графическое описание фазовых равновесий. Диаграмма состояния. Гетерогенные равновесия в однокомпонентных системах. Фазовые переходы первого и второго рода. Энергия Гиббса при фазовых превращениях в однокомпонентных системах. Термодинамический вывод диаграммы состояния однокомпонентной системы с помощью кривых изобарно-изотермического потенциала. Фазовые переходы чистых веществ. Уравнение Клапейрона-Клаузиуса. Диаграммы состояния воды, серы, фосфора. Полиморфные превращения в однокомпонентной системе. Гетерогенные равновесия в двухкомпонентных системах. Условия равновесия фаз. Термодинамический вывод основных типов диаграмм состояния двухкомпонентных систем с помощью кривых изобарно-изотермического потенциала. Двухфазное равновесие: двухкомпонентные системы с неограниченной и ограниченной растворимостью компонентов. Двухкомпонентные системы с эвтектикой. Гетерогенные равновесия в трехкомпонентных системах. Графическое	
1.4	Химическое равновесие	представление состава тройных систем. Условия химического равновесия. Химическое сродство. Закон действующих масс. Константа равновесия. Изотерма химической реакции Вант-Гоффа. Энергии Гельмгольца и Гиббса химических реакций, их связь с константой равновесия. Равновесный выход продуктов химической реакции. Влияние давления на положение равновесия. Зависимость константы равновесия химической реакции от температуры. Уравнения изобары и изохоры химической реакции Вант-Гоффа. Третий закон термодинамики. Расчет константы равновесия реакции при заданной температуре. Метод Шварцмана-Темкина.	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
1.5	Основы химической кинетики и катализа	Принципы химической кинетики. Феноменологическая кинетика. Кинетический закон действующих масс. Лимитирующая стадия. Кинетика простых и сложных химических реакций. Принцип квазистационарности Боденштейна-Семенова. Теории химической кинетики. Зависимость константы скорости от температуры. уравнение Аррениуса. Энергия активации. Поверхность потенциальной энергии. Теория переходного состояния. Энтропия и энтальпия активации. Теория активированного комплекса в применении к мономолекулярным реакциям. Реакции в растворах. Катализ. Общие принципы катализа. Гомогенный катализ. Кислотно-основный катализ. Уравнение Бренстеда. Автокатализ. Гетерогенный катализ. Активность и селективность катализаторов. Энергия активации каталитических реакций. Теория мультиплетов Баландина. Теория активных ансамблей Кобозева.	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
1.6	Равновесные процессы в растворах электролитов.	Предмет и задачи электрохимии. Химические и электрохимические процессы. Классическая теория электролитической диссоциации (Аррениус). Экспериментальные основы теории. Приложение закона действующих масс к процессу диссоциации в растворах. Недостатки теории Аррениуса. Механизмы образования растворов электролитов.	УЭМК «Физическая химия (2 семестр)» https://edu.vsu.ru/cours e/view.php?id=2084

1.7	Ионный транспорт	Энергия кристаллической решетки. Энергия сольватации (гидратации) иона. Термодинамические функции образования ионов в растворах и их практическое определение. Межионные взаимодействия в растворах электролитов. Принципы термодинамического описания. Средний ионный коэффициент активности и средняя ионная активность. Выбор стандартного состояния. Правила Льюиса—Рендала. Правило Брёнстеда. Предпосылки и основные выводы теории растворов сильных электролитов Дебая—Хюккеля. Ионные равновесия в растворах электролитов. Состояние иона водорода в водных растворах. Основные положения теории кислот и оснований Брёнстеда—Лоури. Сопряженные кислотноосновные пары. Протолитическое и автопротолитическое равновесие. Константа кислотности и константа основности. Степень протолиза. Ионное произведение воды. Водородный показатель. Кислотно-основные буферные растворы. Произведение растворимости и условие образования малорастворимых гидроксидов в растворах.	УЭМК «Физическая
	в растворах электролитов	(диффузия, миграция, конвекция). Поток. Плотность потока. Диффузионно-миграционный перенос. Электрохимический потенциал. Соотношение Нернста—Эйнштейна. Диффузия в растворах электролитов. Диффузионный потенциал. Электрическая проводимость растворов электролитов: удельная, молярная. Ионные подвижности. Предельные ионные подвижности. Закон Кольрауша и следствия из него. Правило Вальдена—Писаржевского. Аномальная электропроводность растворов. Влияние различных факторов на электропроводность растворов. Числа переноса ионов и методы их определения. Элементы теории электропроводности Дебая—Хюккеля—Онзагера. Электрофоретическое и релаксационное торможение. Эффекты Вина и Дебая—Фалькенгагена. Эффект Фарадея. Измерение электропроводности растворов с применением постоянного и переменного тока. Кондуктометрическое титрование.	химия (2 семестр)» https://edu.vsu.ru/cours e/view.php?id=2084
1.8	Термодинамика гетерогенных электрохимических систем	Потенциалы, характеризующие электрическое состояние фазы: поверхностный, внешний, внутренний. Химический и электрохимический потенциалы частиц. Гальвани-потенциал. Вольтапотенциал. Условие электрохимического равновесия. Уравнение Нернста для равновесного гальвани-потенциала Правильно разомкнутая цепь. Закон Вольта. Равновесие в электрохимической цепи. Основное уравнение электрохимической термодинамики. Правила записи электрохимической цепи. Уравнение Нернста для напряжения электрохимической цепи. Уравнение Гиббса—Гельмгольца для напряжения электрохимической цепи. Понятие электродного потенциала. Уравнение Нернста для равновесного электродного	УЭМК «Физическая химия (2 семестр)» https://edu.vsu.ru/course/view.php?id=2084

Выход по току. Плотность тока — мера скорости электродной реакции. Поляризация электрода. Многостадийность электродных процессов. Пимитирующая стадия электродного процесса. Понятие о перенапряжении. Теория замедленного перехода заряда. Влияние потенциала на скорость перехода заряда. Уравнение Батлера—Фольмера. Коэффициенты переноса. Ток обмена. Вольтамперные характеристики (поляризационные кривые) электрода в случае замедленного перехода заряда. Уравнения Тафеля. Двойной электрический слой на границе металла и раствора. Емкость двойного электрического слоя. Адсорбция и электрокапиллярные кривые. Потенциал нулевого заряда. Уравнение Пиппмана. Модельные представления о строении двойного электрического слоя. Электрохимическая коррозии металлов. Сопряженные парциальные анодно-катодные реакции. Потенциал коррозии. Ток коррозии. Диаграммы Эванса и их значение. Коррозия с водородной и с кислородной деполяризацией. Активное, пассивное и транспассивное остояние металла. Анодная и катодная защита. Протекторы. Ингибиторы коррозии. 2. Практические занятия не предусмотрены учебным планом 3. Лабораторные работы			T
не предусмотрены учебным планом 3. Лабораторные работы	электродных процессов. Электрохимическа я коррозия	Напряжение цепи, связь с потенциалами отдельных электродов. Анод и катод в электрохимической цепи и электролизере. Таблицы стандартных электродных потенциалов. Ряд напряжений металлов. Классификация электродов. Электроды I рода. Злектроды II рода. Злектроды II рода. Каломельный и хлоридсеребряный электроды. Окислительновосстановительные электроды. Правило Лютера. Хингидронный электрод. Газовые электроды. Водородный электрод. Кислородный электрод. Диаграмма электрохимической устойчивости воды. Ионообменные мембраны и равновесие Доннана. Потенциал Доннана. Ионселективные электроды. Мембранный потенциал. Стеклянный электрод. Диффузионный потенциал и методы его элиминирования. Классификация электрохимических цепей. Физические цепи. Концентрационные цепи без переноса и с переносом (жидкостным соединением). Химические цепи без переноса и с переносом (жидкостным соединением). Химические источники тока. Потенциометрия и ее возможности: определение чисел переноса и коэффициентов активности ионов, стандартных электродных потенциалов, произведения растворимости малорастворимых электролитов. Потенциометрическое титрование. Законы Фарадея. Отклонения от законов Фарадея. Выход по току. Плотность тока — мера скорости электродной реакции. Поляризация электрода. Многостадийность электродных процессов. Лимитирующая стадия электродного процесса. Понятие о перенапряжении. Теория замедленного перехода заряда. Уравнение Батлера—Фольмера. Коэффициенты переноса. Ток обмена. Вольтамперные характеристики (поляризационные кривые) электрода в случае замедленного перехода заряда. Уравнения Тафеля. Двойной электрода в случае замедленного перехода заряда. Уравнения Тафеля. Двойной электроческий слой на границе металла и раствора. Емкость двойного электрического слоя. Адсорбция и электрокапиллярные кривые. Потенциал нулевого заряда. Уравнение Липпмана. Модельные представления о строении двойного электрохимическая коррозии. Ток коррозии. Диаграммы Эванса и их значение. Коррозии. Диаграммы Эванса и их значение. Коррозии. Водородной и с киспоро	химия (2 семестр)» https://edu.vsu.ru/cours
не предусмотрены учебным планом 3. Лабораторные работы			
3. Лабораторные работы		•	
тол тарвый закон гопределение теплоты образования твердого голин «Физическ	3.1 Первый закон	Определение теплоты образования твердого	УЭМК «Физическая
термодинамики. раствора химия 2	термодинамики.	раствора Определение теплоты диссоциации слабой кислоты	химия 2к» https://edu.vsu.ru/cours

		Определение теплоты окисления щавелевой кислоты Определение теплоемкости жидких и твердых	
		веществ	
3.2	Второй закон термодинамики. Энтропия и термодинамически е потенциалы химических реакций	Измерение температурного коэффициента ЭДС	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
3.3	Термодинамика растворов и фазовых равновесий	Криоскопия. Определение молярной массы вещества Криоскопия. Определение степени электролитической диссоциации Определение коэффициента распределения йода между органическим и неорганическим растворителями Двухкомпонентные системы с ограниченной растворимостью в жидком состоянии (система фенол-вода) Трехкомпонентные системы с ограниченной растворимостью в жидком состоянии	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
3.4	Химическое равновесие	Химическое равновесие в системе йодид калия – хлорид железа (III)	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
3.5	Основы химической кинетики и катализа	Гомогенно-каталитическое окисление йодида калия персульфатом аммония Каталитическое разложение пероксида водорода Кинетика гидролиза уксусного ангидрида Кинетика растворения сульфата кальция в воде Кинетика омыления этилацетата	УЭМК «Физическая химия 2к» https://edu.vsu.ru/cours e/view.php?id=9899
3.6	Равновесные процессы в растворах электролитов.	Определение ионного произведения воды Нахождение констант образований одноядерных комплексов металлов Определение концентрационной константы диссоциации слабой кислоты Определение термодинамической константы диссоциации слабой кислоты Определение концентрационной константы гидролиза соли Определение концентрационной константы гидролиза соли Определение произведения растворимости труднорастворимой соли серебра Определение произведения растворимости труднорастворимого гидроксида Определение термодинамических констант равновесия окислительно-восстановительных реакций в твердых электролитах	УЭМК «Физическая химия (2 семестр)» https://edu.vsu.ru/cours e/view.php?id=2084
3.7	Ионный транспорт в растворах электролитов.	Измерение собственной электрической проводимости воды или водно-органического растворителя Определение предельной молярной электропроводности сильного электролита Проверка закона разбавления Оствальда Определение константы диссоциации уксусной кислоты в разных растворителях Определение числе переноса ионов методом движущейся границы Определение числе переноса ионов методом Гитторфа	УЭМК «Физическая химия (2 семестр)» https://edu.vsu.ru/course/view.php?id=2084

		Кондуктометрическое титрование	
3.8	Термодинамика гетерогенных электрохимических систем	Реализация электрода I рода и определение стандартного потенциала Реализация электрода II рода и определение его стандартного потенциала Реализация окислительно-восстановительного электрода и определение его стандартного потенциала Газовый водородный электрод Ионоселективный стеклянный электрод Измерение напряжения концентрационной цепи и определение диффузионного потенциала	УЭМК «Физическая химия (2 семестр)» https://edu.vsu.ru/course/view.php?id=2084
3.9	Кинетика электродных процессов. Электрохимическа я коррозия металлов	Измерение емкости двойного электрического слоя на твердом электроде при помощи моста переменного тока Получение гальваностатической кривой заряжения Pt(Pt)-электрода в серной кислоте Изучение влияния состава раствора на кривые заряжения платинированного платинового электрода Исследование адсорбции атомарного водорода на платинированной платине методом циклической линейной вольтамперометрии Определение адсорбционной псевдоемкости водорода на платине методом спада потенциала при разомкнутой цепи поляризации Электролиз водных растворов электролитов Изучение закономерностей анодного растворения меди в хлоридных электролитах Изучение кинетики восстановления кислорода на стационарном медном электроде в кислых хлоридных или сульфатных растворах Изучение кинетики восстановления кислорода на вращающемся дисковом электроде Исследование влияния ингибиторов на кинетику анодных и катодных процессов на железе в кислой среде Исследование работы коррозионного элемента	УЭМК «Физическая химия (2 семестр)» https://edu.vsu.ru/cours e/view.php?id=2084

13.2. Темы (разделы) дисциплины и виды занятий

Nº	HOMAQUODOUMO TOMA		Виды занятий (часов)			
п/п	Наименование темы (раздела) дисциплины	Лекции	Лаборатор ные	Самостоятельная работа	Подготовка к экзамену	Всего
1	Первый закон термодинамики. Термохимия.	14	20	16	8	50
2	Второй закон термодинамики. Энтропия и термодинамические потенциалы химических реакций	12	20	16	8	50
3	Термодинамика растворов и фазовых равновесий	18	20	16	8	54
4	Химическое равновесие	10	20	18	4	46
5	Основы химической кинетики и катализа	14	22	16	8	52
6	Равновесные процессы в растворах электролитов	14	26	12	9	52
7	Ионный транспорт в растворах электролитов	12	28	14	9	54
8	Термодинамика равновесных электродных	14	28	14	9	56

	систем. Электрохимические цепи.					
9	Кинетика электродных процессов. Двойной электрический слой. Электрохимическая коррозия металлов	14	26	14	9	54
	Итого:	122	210	136	72	540

14. Методические указания для обучающихся по освоению дисциплины:

При освоении лекционного материала необходимо работать не только с конспектами лекций, но и с рекомендованной учебной и методической литературой. Лабораторные занятия по изучаемой дисциплине проводятся для 1) ознакомления с теоретической основой работы, 2) основными приемами и техникой безопасности при работе с используемыми приборами и реактивами, 3) выполнения экспериментальной части работы, 4) обработки экспериментальных результатов и предоставления их для предварительной проверки преподавателю.

Защита лабораторной работы проводится с целью выявления уровня освоения материала по тематике работы способности дать правильную трактовку результатам, полученным при выполнении работы. Защита работы заключается в оформлении работ, устной беседе преподавателя со студентом по полученным в работе результатам и основным теоретическим понятиям по теме работы.

Контроль освоения теоретического материала проводится после прослушивания студентами лекционного материала по каждой теме в виде коллоквиума.

К экзамену допускаются только студенты, выполнившие и отчитавшиеся по всем лабораторным работам, предусмотренным учебным планом.

При реализации дисциплины с использованием дистанционных образовательных технологий используются инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), сервисы видеоконференций (BigBlueButton), электронная почта, мессенджеры и соцсети.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
	Еремин В.В. Основы общей и физической химии : учеб.пособие для студ. высш. учеб.
1	заведений, обуч. по направлению «Химия» / В.В. Еремин,. А.Я. Борщевский. –
	Долгопрудный : Интеллект, 2012. – 847с.
	Дамаскин Б.Б. Электрохимия : [учебное пособие для студ., обуч. по направлению подгот.
2	"Химия"] / Б.Б. Дамаскин, О. А. Петрий, Г. А. Цирлина .— Изд. 3-е, испр. — Санкт-
	Петербург [и др.] : Лань, 2015 .— 670 с.
	Еремин, В.В. Основы физической химии. Учебное пособие в 2 ч. / В.В. Еремин .— 3-е изд.
3	эл. — Москва : БИНОМ. Лаборатория знаний, 2013 .— 322 с. — (Учебник для высшей
	школы) .— <url:http: biblioclub.ru="" index.php?page="book&id=214231">.</url:http:>

б) дополнительная литература:

<u> </u>	слыная литература.		
№ п/п	Источник		
4	Еремин Е.Н. Основы химической термодинамики : учебное пособие для студ. хим. спец.		
4	ун-тов / Е.Н. Еремин .— М. : Высшая школа, 1974 .— 340 с.		
5	Полторак О.М. Термодинамика в физической химии : учебник для хим. и химтехнол.		
5	спец. вузов / О.М. Полторак .— М. : Высш. шк., 1991 .— 318 с.		
	Стромберг А.Г. Физическая химия : Учебник для химических специальностей вузов / А.Г.		
6	Стромберг, Д.П. Семченко. : под ред. А.Г. Стромберга. — 7-е изд., испр. — М. : Высш. шк.,		
	2009 .— 527 c.		
7	Физическая химия : в 2 кн. / К. С. Краснов [и др.] Кн. 1: Строение вещества.		
/	Термодинамика .— 3-е изд., испр. — 2001 .— 511 с.		
8	Физическая химия : В 2 кн. / К. С. Краснов [и др.] Кн. 2: Электрохимия. Химическая		
0	кинетика и катализ .— 3-е изд., испр. — 2001 .— 318 с.		
9	Эткинс П. Физическая химия : в 3-х частях / П.Эткинс, Дж. Де Паула. – Часть 1.		
9	Равновесная термодинамика. – М. : Мир, 2007. – 494с.		
	Бажин Н.М. Термодинамика для химиков : учебник для студ. вузов, обуч. по		
10	специальности «Химия» / Н.М. Бажин, В.А. Иванченко, В.Н. Пармон. – 2-е перераб. И доп.		
	– M. : Химия : КолосC, 2004. – 415c.		

11	Байрамов В.М. Основы химической кинетики и катализа : учеб. пособие для студ. хим. фак. ун-тов, обуч. по спец. 011000 "Химия" и направлению 510500 "Химия" / В.М. Байрамов. — М. : Academia, 2003 .— 251 с.
12	Романовский Б.В. Основы химической кинетики / Б.В. Романовский. – М. : Экзамен, 2006. – 415с.
13	Еремин Е.Н. Основы химической кинетики : учебное пособие для студ. хим. фак. ун-тов / Е.Н. Еремин .— 2-е изд., доп. — М. : Высшая школа, 1976 .— 373 с. : ил., табл.
14	Дамаскин Б.Б. Основы теоретической электрохимии : учеб. пособие для студ. химич. спец. вузов / Б.Б. Дамаскин, О.А. Петрий .— М. : Высшая школа, 1978 .— 238 с.
15	Дамаскин Б.Б. Введение в электрохимическую кинетику : учеб. пособие для студ. хим. спец. ун-тов / Б.Б. Дамаскин, О.А. Петрий .— М. : Высшая школа, 1983 .— 399 с.
16	Багоцкий В.С. Основы электрохимии / В.С Багоцкий. — М. : Химия, 1988 .— 399 с.
17	Ротинян А.Л. Теоретическая электрохимия / А. Л. Ротинян, К. И. Тихонов, И. А. Шошина. — Л. : Химия, 1981 .— 422 с.
18	Измайлов Н.А. Электрохимия растворов / Н.А. Измайлов .— 3-е изд., исправ .— М. : Химия, 1976 .— 488с.
19	Никольский Б.П. Ионоселективные электроды / Б.П. Никольский, Е.А. Матерова .— Л. : Химия. Ленингр. отд-ние, 1980 .— 239 с.
20	Практикум по физической химии. Термодинамика : учеб. пособие для студ. вузов, обуч. по направлению «Химия» и специальности «Химия» / Е.П.Агеев [и др.] : под ред. Е.П.Агеева, В.В. Лунина. – М. : Academia, 2010 218с.
21	Практические работы по физической химии : учеб. пособие / Ю. П. Акулова [и др.] ; Под ред. К.П. Мищенко и др. — 5-е изд., перераб. — СПб. : Профессия, 2002 .— 384 с.
22	Шаталов А.Я. Практикум по физической химии : учеб. пособие для студ. химич. и химикотехнол. спец. вузов / А.Я. Шаталов, И.К. Маршаков .— М. : Высшая школа, 1975 .— 284 с.
23	Практикум по электрохимии : учеб. пособие для химич. спец. вузов / Б.Б. Дамаскин [и др.]. — М. : Высш.шк., 1991 .— 287 с.
24	Физическая химия в вопросах и ответах: Кинетика. Электрохимия : учеб. пособие для студ. хим. спец. ун-тов / Е.М. Кузнецова [и др.]. — М. : Изд-во МГУ, 1981 .— 264 с.
25	Краткий справочник физико-химических величин / под ред. А.А. Равделя, А.И. Пономаревой . — М. : Вербум-М, 2008 .— 230 с.
26	Термодинамические свойства индивидуальных веществ : справ. изд.: в 4-х т. / Л.В. Гурвич [и др.]. — 3-е изд., перераб. и расширенное .— М. : Наука, 1978-1982.
27	Добош Д. Электрохимические константы : справ. для электрохимиков / Д. Добош. — М. : Мир, 1980 .— 364 с.
28	Справочник по электрохимии / под ред. А.М. Сухотина .— Л. : Химия . Ленингр. отд-ние, 1981 .— 486 с.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

29	<u>www.lib.vsu.ru</u> – 3HБ ВГУ
30	ЭУМК «Физическая химия 2к» https://edu.vsu.ru/course/view.php?id=9899
31	ЭУМК «Электрохимия» https://edu.vsu.ru/course/view.php?id=2084

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Сборник примеров и задач по электрохимии : учебное пособие / [А.В. Введенский и др.] .—
ı	Санкт-Петербург ; Москва ; Краснодар : Лань, 2018 .— 204 с.
2	Лабовиц, Л. Задачи по физической химии с решениями / под ред. Ю. В. Филиппова .— М. : Мир,
	1972 .— 442 c.
	Сборник задач по теоретической электрохимии : учеб. пособие для студ. вузов, обуч. по спец.
3	"Технология электрохимических производств" / под ред. Ф.И. Кукоза .— М. : Высшая школа,
	1982 .— 159 c.
4	Еремин В.В. Задачник по физической химии / В.В. Еремин [и др.] – М. : Экзамен, 2003. – 318 с.
	Практикум по физической химии : для студ. хим. фак. всех форм обучения / И.К. Маршаков [и
5	др.]. Ч. 1: Химическая термодинамика .— 2002 .— 88 с. —
	<pre><url:http: elib="" feb03023.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:></pre>
	Кинетика химических и электрохимических процессов. Электропроводность : практикум по спец.
6	011000- Химия / Сост.: А.В. Введенский [и др.] — Воронеж : ЛОП ВГУ, 2003
	Ч. 2. — 82 с.(№ 648). — URL:http://www.lib.vsu.ru/elib/texts/method/vsu/jan04053.pdf>.
7	Равновесные электродные системы. Граница раздела заряженных фаз : практикум по спец.
	011000- Химия / сост.: А.В. Введенский [и др.]. — Воронеж, 2003

	Ч. 3 / Сост.: А.В. Введенский, Е.В. Бобринская, И.В. Протасова, Н.В. Соцкая. — 79 с. : (№ 719) — <url:http: elib="" jan04059.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
8	Сборник примеров и задач по физической химии : для студ. химич. фак. всех форм обучения / сост.: Кравченко Т. А., Введенский А.В., Козадеров О. А Ч.І: Химическая термодинамика .— 2002 .— 63 с. — <url:http: elib="" feb03021.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
9	Сборник примеров и задач по физической химии : для студ. химич. фак. всех форм обучения / сост.: Введенский А.В., Кравченко Т.А., Козадеров О. А Ч.2: Химическая термодинамика .— 2002 .— 67 с. — <url:http: elib="" feb03022.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
10	Сборник примеров и задач по электрохимии : учеб. пособие / сост.: А.В. Введенский [и др.] .— Воронеж : ИПЦ ВГУ, 2010 Ч. 1: Равновесные процессы в растворах электролитов .— 39 с. <url: <a="" href="http://www.lib.vsu.ru/elib/texts/method/vsu/m10-03.pdf">http://www.lib.vsu.ru/elib/texts/method/vsu/m10-03.pdf>.</url:>
11	Сборник примеров и задач по электрохимии : учеб. пособие / сост.: А.В. Введенский, С.А. Калужина, Т.А. Кравченко [и др.] . — Воронеж : ИПЦ ВГУ, 2010 Ч. 2: Ионный транспорт. Кулонометрия .— 60 с. <url: <a="" href="http://www.lib.vsu.ru/elib/texts/method/vsu/m10-04.pdf">http://www.lib.vsu.ru/elib/texts/method/vsu/m10-04.pdf>.</url:>

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

При реализации учебной дисциплины используются элементы электронного обучения и различные дистанционные образовательные технологии, позволяющие обеспечивать опосредованное взаимодействие (на расстоянии) преподавателей и обучающихся, включая инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), проведение вебинаров, видеоконференций (в том числе с применением сервисов Zoom, Discord и др.), взаимодействие в соцсетях, посредством электронной почты, мессенджеров.

18. Материально-техническое обеспечение дисциплины:

Установки для измерения тепловых эффектов, криоскопических измерений, определения электропроводности; учебный комплекс «Химия»; иономеры, термостаты, потенциостаты, электроды, электрохимические ячейки, мультимедийное оборудование.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

одср/	одержанием следующих разделов дисциплины.				
№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
	Первый закон			Комплект тестов № 1,	
1	термодинамики.	ОПК-1	ОПК 1.1-1.3	Лабораторные работы,	
	Термохимия			Контрольная работа № 1	
2	Второй закон термодинамики. Энтропия и термодинамические потенциалы химических реакций	ОПК-2	ОПК 2.1-2.4	Комплект тестов № 1, Лабораторные работы, Контрольная работа № 1	
	Термодинамика			Комплект тестов № 1,	
3	растворов и фазовых	ОПК-3	ОПК 3.1-3.2	Лабораторные работы,	
	равновесий			Контрольная работа № 1	
	Химическое	ОПК-3	ОПК 3.1-3.2	Комплект тестов № 1,	
4	равновесие			Лабораторные работы,	
				Контрольная работа № 1	
_	Основы химической кинетики и катализа	ОПК-6	ОПК 6.1-6.2	Комплект тестов № 1,	
5		ПК-1	ПК 1.1-1.2	Лабораторные работы,	
	Danisa			Реферат № 1	
6	Равновесные	OLK 3	ОПК 3.1-3.2	Комплект тестов № 2,	
6	процессы в растворах	ОПК-3	ПК 1.1-1.2	Лабораторные работы,	
	электролитов.		001(0400	Контрольная работа № 2, Реферат № 2	
7	Ионный транспорт в	ОПК-3	ОПК 3.1-3.2	Комплект тестов № 2,	
'	растворах электролитов.	ПК-1	ПК 1.1-1.2	Лабораторные работы, Контрольная работа № 2	
	олоктролинов.			поптрольная расота № 2	

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
				Курсовая работа
8	Термодинамика гетерогенных электродных систем.	ОПК-1 ПК-1	ОПК 1.1-1.3 ПК 1.1-1.2	Комплект тестов № 2, Лабораторные работы, Контрольная работа № 2 Курсовая работа
Кинетика электродных процессов. ОПК-2 ОПК 2.1-2.4 ОПК 6.1-6.2 Коррозия металлов. ПК-1 ПК 1.1-1.2		Комплект тестов № 2, Лабораторные работы, Контрольная работа № 2, Реферат № 2 Курсовая работа		
Промежуточная аттестация форма контроля – зачет, экзамен				Комплект тестов № 1, Комплект тестов № 2, Комплект КИМ № 1 Комплект КИМ № 2

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных ср

cp	редств:			
	Тестовые задан	ия		
		Комплект тестов № 1		
				УТВЕРЖДАЮ
Ди Фо Ви	правление подготовки / специально ісциплина Физическая химия ірма обучения очная д контроля тест д аттестации текущая	сть 04.03.01 - Химия	д.х.н., доц	Заведующий кафедрой физической химии О.А. Козадеров 2024
1.	а) в изотермическом	Контрольно-измерительный материал № 1 ирения идеального газ будет больше: в) в изобарном г) в адиабатическом		
2.	Тепловые эффекты химических реа а) первый меньше второго б) первый больше второго		:	
3.	Энтальпия химической реакции ра	вна ее теплоте при постоянстве:		

5. Тепловой эффект химической реакции с ростом температуры: а) всегда повышается в) не изменяется

a) V, T

б) Р, Т

4. Отношение $C_p/C_v\,$ всегда: а) больше единицы

б) меньше единицы

г) никогда не равна

б) всегда убывает г) может как повышаться, так и убывать

в) иные параметры и их сочетания

6. Для некоторой соли энергия разрушения кристаллической решетки больше, чем суммарная теплота сольватации катиона и аниона (по модулю). Это обозначает, что процесс растворения соли:

в) равно единице

г) стремится к нулю

б) эндотермичен	г) возможны все варианты
7. Почему теплота нейтрализа Развернутый ответ:	ции сильных кислот одинакова, но отличается от теплоты нейтрализации слабых кислот?
	Преподаватель к.х.н., доц. С.Н. Грушевская
	УТВЕРЖДАЮ Заведующий кафедрой физической хими д.х.н., доц О.А. Козадерог 2024
Направление подготовки / спет Дисциплина Физическая химия Форма обучения очная Вид контроля тест Вид аттестации текущая	
	Контрольно-измерительный материал № 2
1. Энтропия самопроизвольног	о процесса в изолированной системе:
а) повышается б) убывает	в) не изменяется
б) убывает	г) возможны все варианты
2. При изотермическом смеше	нии газов энтропия:
а) повышается б) убывает	г) возможны все варианты
температуре (Sп): a) Sкр > Sп	чения: энтропия 1 моль кристаллического вещества (Sкp) и энтропия 1 моль его паров при той жо в) $Skp = S\pi$ г) возможны все варианты
· -	
4. О возможности протекания а) энтропии	химической реакции в закрытой системе при P;T = Const следует судить по знаку изменения: в) энергии Гиббса
б) энтальпии	г) энергии Гельмгольца
5. Энергия Гельмгольца в ходе а) повышается; б) убывает; в) не изменяется.	самопроизвольной химической реакции при постоянстве естественных параметров:
6. При постоянстве каких парав а) V, S б) P, S	иетров убыль энтальпии химической реакции равна ее максимальной полезной работе: в) иные параметры и их сочетания г) никогда не равна
7. В чем сходство и различия п Развернутый ответ:	онятий: функция состояния, характеристическая функция, термодинамический потенциал?
	Преподаватель к.х.н., доц. С.Н. Грушевская

в) тепловой эффект отсутствует

а) экзотермичен

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц.	О.А. Козадеров
	2024

Вид аттестации текущах
Контрольно-измерительный материал № 3
1. Стандартный химический потенциал компонента определяется:
а) температурой Т;
б) давлением Р;
в) активностью (концентрацией);
г) сочетанием этих параметров.
2. В процессе осмоса через полупроницаемую мембрану проникает:
а) растворенное вещество;
б) растворитель;
в) раствор.
3. Как изменяется химический потенциал компонента в процессе самопроизвольного перехода из одной фазы в другую
гетерогенной системе:
а) повышается;
б) убывает; в) не изменяется.
4. В каком случае растворимость газа в жидкости больше:
а) в идеальном растворе;
б) при положительных отклонениях от идеальности;
в) при отрицательных отклонениях от идеальности.
5. Для раствора вещества А в растворителе В верен закон Генри. Как связаны между собой стандартные химические потенциа
вещества А в паровой и жидкой фазах?
a) $\mu(A) > \mu(B)$ B) $\mu(A) = \mu(B)$
б) $\mu(A) < \mu(B)$ г) возможны любые соотношения в зависимости от условий
6. На диаграмме состояния температура-состав двухкомпонентной системы имеются точки, для которых степень свободы раг двум. Какому числу равновесных фаз она отвечает:
a) 1; б) 2; в) 3; г) 4.
7. Почему кривая сублимации на P-T диаграмме однокомпонентной системы всегда характеризуется большим наклоном, ч кривая испарения?
Развернутый ответ:
Преподаватель к.х.н., доц. С.Н. Грушевская

	д.х.н., доц	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Контрольно-измерительный материал № 4		
 Как энергия Гиббса химической реакции изменяется с ростом активности (концентрации а) повышается; убывает; не изменяется может меняться сложным образом. 	и) исходных веш	еств:
 Как энергия Гиббса химической реакции изменяется с ростом температуры: повышается; убывает; не изменяется; может меняться сложным образом. 		
 Константа равновесия химической реакции с ростом термодинамической активности и а) повышается; убывает; не изменяется розможны любые варианты. 	сходных вещест	в:
 Константа равновесия химической реакции изменяется с ростом температуры: а) повышается; б) убывает; в) не изменяется; г) возможны любые варианты. 		
5. С ростом концентрации реагентов равновесный выход продуктов химической реакции: а) повышается; б) убывает; в) не изменяется.		
6. С увеличением давления равновесный выход продуктов химической реакции: а) повышается; б) снижается; в) не меняется; г) меняется более сложным образом.		
7. Всегда ли существует различие между константами равновесия $\begin{cases} K_p \ \text{u} \ \begin{cases} K_c \ ? \ \end{cases}$ Развернутый ответ:		

Преподаватель _____ к.х.н., доц. С.Н. Грушевская

	этын ждаго
- Sa	ведующий кафедрой
	физической химии
д.х.н., доц.	О.А. Козадеров
	2024
Контрольно-измерительный материал № 5	
1. Для самопроизвольного течения химической реакции необходимо, чтобы произведение химического сро	одства А и скорости
реакции v было:	
a) равно нулю	
б) больше нуля	
в) меньше нуля	
г) отлично от нуля	
2. Энергия активации химической реакции с ростом температуры:	
а) всегда повышается	
б) всегда убывает	
в) не изменяется	
г) может меняться более сложным образом	
1) может меняться облее сложным образом	
3. Скорость химической реакции при увеличении ее энергии активации:	
а) повышается	
б) убывает	
в) не изменяется	
г) возможны все варианты	
4. Химическая реакция протекает через последовательные стадии. Скорость реакции в целом определяется пара	імеграми:
а) самой быстрой стадии	
б) самой медленной стадии	
в) не зависит от параметров отдельных стадий	
г) зависит от параметров всех стадий	
5. Химическая реакция протекает через параллельные стадии. Скорость реакции в целом определяется парамет	рами:
а) самой быстрой стадии	1
б) самой медленной стадии	
в) не зависит от параметров отдельных стадий	
г) зависит от параметров всех стадий	
7. Может ли порядок реакции быть нулевым, дробным, отрицательным?	
Развернутый ответ:	
i abbepitytiin otbet.	

УТВЕРЖДАЮ

Преподаватель _____ к.х.н., доц. С.Н. Грушевская

Комплект тес

Комплект тестов № 2
УТВЕРЖДАЮ
Заведующий кафедрой
физической химии
д.х.н., доц О.А. Козадеров 2024
2024
Направление подготовки / специальность 04.03.01 - Химия
Дисциплина Физическая химия
Форма обучения очная
Вид контроля тест
Вид аттестации текущая
Контрольно-измерительный материал № 1 1. Какое из утверждений неверно:
а) внутренний потенциал фазы суммируется из внешнего и поверхностного;
б) внешний потенциал фазы суммируется из внутреннего и Гальвани-потенциала на границе фаз;
в) Гальвани-потенциал на границе фаз суммируется из Вольта-потенциала и скачка двух поверхностных потенциалов.
2. Какая из ячеек для определения чисел переноса ионов методом Гитторфа обязательно требует определения пропущенного
электрического заряда:
а) с Cu-анодом и Pt-катодом;
б) с Pt-анодом и Pt-катодом; в) обе;
r) ни одна не требует.
3. В сольватной оболочке какого из двух ионов с $z_1 = z_2$ содержится большее число молекул растворителя:
а) у иона с большим кристаллохимическим радиусом;
б) у иона с меньшим кристаллохимическим радиусом;
в) не зависит от размера иона.
4. Какое из утверждений верное:
а) двойной электрический слой возникает из-за появления Гальвани-потенциала на границе фаз;
б) Гальвани-потенциал возникает в ходе пространственного разделения электрических зарядов на границе фаз;в) оба верны.
5. Процесс электролитической диссоциации соли описывается уравнением: KA=v ₊ K ^{z+} +v ₋ A ^{z-} Какая термодинамическая
активность может быть оценена экспериментально:
а) соли (а ₃);
б) средне-ионная (a_{\pm}) ;
в) катиона (a_+) или аниона (a) .
6. Какая из систем представляет равновесный окислительно-восстановительный электрод:
a) Cu Cu ⁺ , Cu ²⁺ ; 6) Pt Cu ⁺ ; Cu ²⁺ ;
в) Pt Cu ; Cu ; в) Pt Ag+, Cu ²⁺ .
7. В теории Дебая-Хюккеля средне-ионного коэффициента активности размер "ионной атмосферы" (дебаевский радиус
экранирования) с ростом концентрации ионов:
а) падает;
б) растет;
в) не изменяется.
8. Напряжение цепи $M_1 \mid L_1 \parallel L_2 \mid M_2$ больше нуля, а цепи $M_2 \mid L_2 \parallel L_1 \mid M_1$ меньше нуля. Какая из цепей записана верно:
а) первая;
б) вторая;
в) ни одна.
9. При 298 K ионные произведения воды и этилового спирта $K_W(H_2O)=10^{-14}$ и $K_W(C_2H_5OH)=10^{-20}$. В нейтральном водном и
этанольном растворах одинаковой концентрации какой-либо сильной соли:
a) pH(H ₂ O)>pH(C ₂ H ₅ OH);
б) pH(H ₂ O) <ph(c<sub>2H₅OH); в) pH(H₂O)=pH(C₂H₅OH);</ph(c<sub>
10. Какое из следующих выражений не является уравнением Гиббса-Гельмгольца:
a) $\Delta H = \Delta G - T\Delta S$; 6) $\Delta H = -zFE + zFT \left(\frac{dE}{dT}\right)_{p}$; B) oбa.
$\left(\frac{dT}{dT}\right)_{p}$
\
11. Молярная электропроводность раствора электролита увеличивается с ростом температуры. Это обусловлено главным образом:
а) изменением механизма переноса ионов;
б) снижением кинематической вязкости;
в) изменением диэлектрической проницаемости. 12. Ток обмена электрохимической Ox,Red-реакции:
а)не зависит от активностей реагентов;
б) зависит от активности обоих реагентов;
в) зависит от активности лишь одного из реагентов.
Преподаватель д.х.н., доц. О.А. Козадеров

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Направление подготовки / специальность 04.03.01 - Химия Дисциплина Физическая химия Форма обучения очная Вид контроля тест Вид контроля ист

Форма обучения очная Вид контроля тест Вид аттестации текущая			
мере роста концентрации раствора С	электролитической диссо	рительный материал № 2 оциации слабого электролита в) не изменится.	связаны соотношением: $K=\alpha^2 C/(1-\alpha)$. По
2. При диффузии катиона и аниона в выравниваются. Это связано: а) с выравниванием коэфо б) с выравниванием их ко в) с наложением миграционного г) с образованием ионных двойни 3. В каких растворителях ионы H ₃ O+	рициентов диффузии ионо эффициентов трения; потока, вызванного гради иков.	ов; нентом диффузионного потені	циала, на диффузионный поток;
а) протофильных;	б) протогенных;	в) апротонных.	
4. Возникает ли двойной электрическ	кий слой на границе платі	ины с абсолютно чистой водо	й:
а) да;) нет; в) возн	никает, но быстро исчезает.	
 5. Какой из параметров гидратации обраньная теплота гидрабор химическая теплота гидра обраны на реальная обраны	тации; пратации; е зависит от рН среды: ного состояния для компо б) а г) а ет быть изготовлен элект б) КВг;	онентов раствора электролита $a_{0}^{0}=a_{+}^{0}\neq a_{-}^{0};$ $a_{0}^{0}\neq a_{+}^{0}\neq a_{-}^{0}.$ грод II рода, обратимый по исв.) AgBr.	а является верным:
10. Какое из выражений дает величи $a) \ \ g_{\alpha/\beta} = -\frac{1}{zF} \bigg[\sum_i (\tilde{\mu}_i \nu_i)^\beta - \frac{1}{zF} \bigg] \\ B) \ \ g_{\alpha/\beta} = -\frac{1}{zF} \bigg[\sum_i (\tilde{\mu}_i \nu_i)^\beta - \frac{1}{zF} \bigg] \\ C = -\frac{1}{zF} \left[\sum_i (\tilde{\mu}_i \nu_i)^\beta - \frac{1}{zF} \right] \\ C = -\frac{1}{zF} \left[\sum_i (\tilde{\mu}_i \nu_i)^\beta - \frac{1}{zF} \right] \\ C = -\frac{1}{zF} \left[\sum_i (\tilde{\mu}_i \nu_i)^\beta - \frac{1}{zF} \right] $	$-\sum_{\mathrm{i}} (\widetilde{\mu}_{\mathrm{i}} v_{\mathrm{i}})^{lpha} \Bigg]$	на границе фаз, если на ней и $g_{\alpha/\beta} = -rac{1}{zF} \left[\sum_{i=1}^{N} e_{i} g_{\alpha/\beta} \right]$	
ZГ _і 11. Стандартный электродный потен	• -	ода полагают равным нулю	при:
a) T=0 K	б) T=298 К	в) любых Т.	•
12. Удельная электропроводность во снижается. Появление участка снижа		электролита с ростом его кон	центрации вначале растет, а затем
а) изменением механизма ми	грационного переноса;		
б) изменением числа носи в) нарастающим влияние		твий.	
		Преподаватель	д.х.н., доц. О.А. Козадеров

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

1. Энергия какого из межчастичных взаимодействий в раство частицами:	ое электролита наиболее резко зависит от расстояния между
а) диполь-дипольного;	
б) ион-дипольного;	
в) ион-ионнного.	
2. Ион-ионное взаимодействие при диффузии ионов в растворе эле	ктролита:
а) проявляется сильнее, чем при миграции; 6) проявляется слабее, чем при миграции; в) вообще не играет роли. 3. Различаются ли напряжения электрохимических цепей: (-) $Pt \mid M_1 \mid L \mid M_2, Pt (+)$ а) да; 6) нет; в) различаются по знаку, но не по величине; г) различаются как по знаку, так и по величине.	
 4. Различие между химическим и электрохимическим потенциала равновесных процессов: а) в объеме раствора электролита; б) на границе раздела проводящих фаз; в) в обоих случаях. 	ми ионов і-го сорта обязательно нужно учитывать при описании
5. Электродом I рода является: a) Ag AgCl Cl $^-$;	
г) снижается, а затем возрастает. 7. Средняя энергия каких взаимодействий является объектом расче а) ион-ионных; б) ион-дипольных; в) дип 8. Буферным действием обладает смесь оксалата калия с:	оль-дипольных. той; ислотой.
 a) CH₃COOH и H₂F₂; б) CH₃COOH₂⁻ и CH₃COOH; в) H₂F₂ и CH₃COOH₂⁻; г) H₂F₂ и HF₂⁻. 10. В основном уравнении электрохимической термодинамики для	
а) свободную энергию Гиббса анодной реакции; б) свободную энергию Гиббса катодной реакции; в) свободную энергию Гиббса брутто-химической реакт 11. Сильно разбавленные водные растворы слабых кислот (кон концентрацию. Если $K_1 > K_2$, то: а) $pH_1 > pH_2$; б) $pH_1 < pH_2$; 12. Напряжение цепи Cu / Cu ²⁺ / Hg(Cu), Cu:	ции.
а) положительно; б) отрицательно;	в) равно нулю.
Пре	еподаватель д.х.н., доц. О.А. Козадеров

				УТВЕРЖДАЮ Заведующий кафедрой физической химии
			д.х.н., доц	О.А. Козадеров 2024
Направление подготовки / специальн Дисциплина Физическая химия	ость 04.03.01 - Химия			2024
Форма обучения очная				
Вид контроля тест				
Вид аттестации текущая			_	
	Контрольно-измерите			
 Константа гидролиза соли слабой к а) Кг=Кw/Кдисс; Кг=Кw-Кдисс; 	ислоты и сильного основани	я описывается соотношени	іем:	
в) $K_{\Gamma} = K_{\text{дисс}} / K_{\text{w}};$				
2. При помощи какого электрода нели	зя потенциометрически опр	еделить концентрацию раст	гвора HCl :	
а) стеклянного;				
б) хингидронного;				
в) ртутносульфатного.	-			
3. Стандартная плотность тока обмен	а ${\bf 1}_0$ двух разных ионно-мет	аллических электродов рав	на 10 ⁻³ А/см ² и	$10^3 \mathrm{A/cm^2}$. Какой из этих
электродов характеризуется повышен	ным поляризационным сопр -	отивлением стадии переход	да заряда:	
а) с низким $ {f i}_0 ;$	б) с высоким $ {f i}_0 ;$	в) не зависит от $ {f i}_0 $.		
4. Появление двойного электрическог а) растворением металла;	б) адсорбцией ио	нных компонентов раствор		ловлено:
в) адсорбцией молекул воды;				
5. Чем принципиально отличаются хи				
	іем скачка потенциала на гра ной зависимости напряжения			
в) различием металлов ано		. 40,		
г) порядком записи элемен				
6. К какому типу потенциалов относи	тся потенциал Доннана:			
а) Вольта-потенциал;				
б) Гальвани-потенциал; в) электродный потенциал	:			
г) реальный потенциал.	,			
7. Эффекты электрофоретического и	и релаксационного торможе	ния при миграции ионов	в растворе эл	іектролита с ростом его
концентрации:				
а) нарастают;				
б) снижаются; в) компенсируют друг дру	гя			
8. На катодной поляризационной криг		обнаружена область относ	ительной неза	висимости плотности
тока от перенапряжения, причем враг				
а) диффузионная;				
б) электрохимическая;				
в) химическая;				
г) кристаллизационная.	VCl			
9. По мере насыщения водного раство а) не меняется; б) рас		ь коррозии меди:		
10. Правило Кольрауша $\Lambda_0 = v_+$	· ·	я к паствопам сипьных эпек	тропитов:	
а) любых концентраций;	Tt+ TV_Tt_ inprintered	и к растворам сильных элек	пролитов.	
б) разбавленным;				
в) концентрированным.				
11. К какому типу физических цепей	относится цепь (–)Pt, Cu ₍₁₁₁₎	$Cu^{+} \mid Cu_{(100)}, Pt (+):$		
а) гравитационная;				
б) аллотропная; в) кристаллографическая.				
12. Эффект Фарадея в слабых электро	олитах обусловлен:			
	ги ионов с напряженностью	электрического поля;		
	ссоциации с напряженностью			
	ги ионов с частотой перемен	ного тока;		
г) изменением степени дис	социации с частотои тока.			
	Пг	еподаватель	Д.Х.Н., Д	оц. О.А. Козадеров

Задания для контрольных работ Контрольная работа № 1

1. Найти стандартную молярную энтальпию образования аммиака на основании данных о реакциях в газовой фазе:

a)
$$2H_2 + O_2 = 2H_2O$$
, $\Delta_r H_{298,a}^{\circ} = -571,68 \frac{\kappa / Jm}{Magh}$;

$$δ) 4NH3 + 3O2 = 6H2O + 2N2, $ΔrHο298,δ = -1530, 26 \frac{κ,U,κ}{μοπ}.$$$

2. Оксид ртути диссоциирует по реакции $2HgO(тв.) = 2Hg(г.) + O_2(г.)$. При 693 К давление диссоциации равно 51596 Па, а при 723 К - 107991 Па. Рассчитать: 1) константы равновесия при этих температурах; 2) энтальпию диссоциации 1 моль HgO.

Контрольная работа № 2

- 1. Предельная молярная электропроводность раствора KClO₄ при 18° C составляет $122,7\cdot10^{-4}~\rm Om^{-1}\cdot m^{2}\cdot m$ оль⁻¹. Число переноса иона $\rm ClO_{4}^{-}$ равно 0,479. Найти предельные электрические подвижности ионов в растворе.
- 2. Вычислить $E_{O_2,H_2O_2|P_1}^0$ для реакции $O_2 + 2H_3O^+ + 2e^- = H_2O_2 + 2H_2O$, если для реакций O_2

$$+4 H_3 O^+ + 4 e^- = 6 H_2 O \ E^0_{O_2, H_2 O \mid Pt} = 1,229 \ B; H_2 O_2 + 2 H_3 O^+ + 2 e^- = 4 H_2 O \ E^0_{H_2 O_2, H_2 O \mid Pt} = 1,776 \ B.$$

Темы курсовых работ

- 1. Электроокисление органического вещества на металлическом или сплавном электроде
- 2. Электрохимические свойства водных растворов органических кислот
- 3. Электрохимические свойства водно-органических растворов органических кислот
- 4. Электрохимические свойства водных растворов неорганических кислот
- 5. Константы равновесия электрохимических процессов
- 6. Коррозионное поведение металлов и сплавов в водных растворах
- 7. Коррозионное поведение металлов и сплавов в водно-органических растворах
- 8. Диффузионная кинетика катодного осаждения металла
- 9. Анодное растворение сплава в водном растворе
- 10. Определение коэффициента диффузии ионов металла в водных растворах электрохимическими методами
- 11. Гальванические элементы

Темы рефератов Реферат № 1

- 1. Принципы химической кинетики.
- 2. Феноменологическая кинетика.
- 3. Кинетический закон действующих масс.
- 4. Лимитирующая стадия.
- 5. Кинетика простых химических реакций.
- 6. Кинетика сложных химических реакций.
- 7. Принцип квазистационарности Боденштейна-Семенова.
- 8. Зависимость константы скорости от температуры.
- 9. Уравнение Аррениуса. Энергия активации.
- 10. Поверхность потенциальной энергии.
- 11. Теория переходного состояния.
- 12. Теория активированного комплекса в применении к мономолекулярным реакциям.
- 13. Реакции в растворах.
- 14. Общие принципы катализа.
- 15. Гомогенный катализ.
- 16. Кислотно-основный катализ.
- 17. Автокатализ.
- 18. Гетерогенный катализ.
- 19. Активность и селективность катализаторов.
- 20. Энергия активации каталитических реакций.
- 21. Теория мультиплетов Баландина.
- 22. Теория активных ансамблей Кобозева.

Реферат № 2

- 1. Понятие кислоты и основания в современной химии.
- 2*. Диссоциация кислот и оснований в разбавленных водных растворах.
- 3. Сольватация (гидратация) и сольватная (гидратная) оболочка иона.
- 4*. Математический аппарат теории растворов сильных электролитов Дебая–Хюккеля.
- 5. Буферные растворы: классификация, стабилизируемое значение рН, буферная емкость, применение.
- 6. Ступенчатая диссоциация кислот в растворах.
- 7. Ступенчатая диссоциация комплексных соединений в растворах.
- 8. Гидролиз солей: причины, термодинамическое описание, влияние различных факторов.
- 9. Экспериментальное определение констант ионных равновесий в растворах.
- 10. Теория кислот и оснований Брёнстеда-Лоури и современная синтетическая неорганическая химия.
- 11. Протонные и апротонные растворители в современной химии.
- 12. Строение двойного электрического слоя по Штерну и по Грэму.
- 13. Получение и трактовка электрокапиллярных кривых.
- 14. Основное уравнение электрохимической термодинамики и примеры его практического использования.
- 15. Механизмы и кинетические закономерности выделения водорода на разных металлах. Коррозия с водородной деполяризацией.
- 16. Механизмы восстановления молекулярного кислорода в кислых и щелочных средах. Коррозия с кислородной деполяризацией.
- 17. Основные положения и выводы теории замедленного перехода заряда. Водородное перенапряжение на ртутном электроде.
- 18. Основные положения и выводы теории диффузионного перенапряжения. Кинетика восстановления молекулярного кислорода на инертных металлах.
- 19*. Классическая и современная формулировки принципа независимого протекания электродных процессов на сложных электродах.
- 20. Простые и сложные электроды в электрохимии. Электрохимический механизм коррозии металлов.
- 21. Современные представления о пассивном состоянии металлов.
- 22. Коррозия металлов в контакте.

Примечание. Звездочкой (*) отмечены темы повышенной трудности.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: устного опроса (индивидуальный опрос, фронтальная беседа); письменных работ (контрольные, лабораторные работы); тестирования; оценки результатов практической деятельности (курсовая работа).

Критерии оценивания:

Nonrephin equinibation.		
	Уровень	
Критерии оценивания компетенций	сформирован	Шкала оценок
	ности	
	компетенций	
Обучающийся в полной мере владеет теоретическими основами	Повышенный	Отлично
физической химии и электрохимии, способен иллюстрировать	уровень	
ответ примерами, фактами, данными научных исследований,		
применять теоретические знания для решения практических		
задач в области электрохимической термодинамики и		
электрохимической кинетики		
Обучающийся владеет теоретическими основами физической	Базовый	Хорошо
химии и электрохимии, способен иллюстрировать ответ	уровень	
примерами, допускает ошибки при применении теоретических		
знаний для решения практических задач в области		
электрохимической термодинамики и электрохимической		
кинетики		

Обучающийся владеет частично теоретическими основами	Пороговый	Удовлетвори-
физической химии и электрохимии, фрагментарно способен	уровень	тельно
иллюстрировать ответ примерами, фрагментарно умеет		
применять теоретические знания для решения практических		
задач в области электрохимической термодинамики и		
электрохимической кинетики		
Обучающийся демонстрирует отрывочные, фрагментарные	_	Неудовлетвори-
знания теоретических основ физической химии и электрохимии,		тельно
допускает грубые ошибки при применении теоретических		
знаний для решения практических задач в области		
электрохимической термодинамики и электрохимической		
кинетики		

20.2 Промежуточная аттестация

Комплект КИМ № 1

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Построение диаграммы кипения двух взаимно растворимых жидкостей. Смысл областей и линий. Расчет степени свободы в характерных точках по правилу фаз Гиббса. Первый закон Коновалова.
- 2. Химическое сродство. Химическое равновесие. Условия химического равновесия. Связь химического сродства с константой равновесия химической реакции.

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 2

- 1. Функции процесса. Внутренняя энергия. Энтальпия. Первое начало термодинамики для обратимых процессов, протекающих в различных условиях (изохорический, изобарический, изотермический, адиабатический).
- 2. Применение закона действующих масс к гомогенным и гетерогенным химическим реакциям. Различные формы выражения константы равновесия.

УТВЕРЖД	
УТВЕРЖД	
Заведующий кафе,	
физической хі д.х.н., доц О.А. Козад	1МИИ

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Термохимия. Закон постоянства сумм теплот Гесса и его следствия. Стандартная энтальпия. Теплоты (энтальпии) образования и сгорания веществ. Калориметрия.
- 2. Изотерма химической реакции Вант Гоффа. Энергии Гельмгольца и Гиббса химической реакции. Стандартные энергии Гельмгольца и Гиббса и их связь с константой равновесия.

Преподаватель	к.х.н., доц. С.Н. Грушевская
---------------	------------------------------

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 4

- 1. Калорические коэффициенты. Теплоемкость. Различные виды теплоемкостей. Влияние температуры на тепловой эффект химической реакции. Уравнение Кирхгофа. Приближенное и точное решение.
- 2. Расчет равновесного выхода продуктов химической реакции.

Преподаватель	к.х.н., доц. С.Н. Грушевская		
			УТВЕРЖДАЮ Заведующий кафедрой
			физической химии
		д.х.н., доц	
			2024

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Второе начало термодинамики. Принцип адиабатной недостижимости Каратеодори. Введение понятия энтропии. Энтропия обратимых и необратимых процессов. Некомпенсированная теплота Клаузиуса.
- 2. Влияние давления на равновесный выход продуктов химической реакции.

Преподаватель	 к.х.н., доц. С.Н. Грушевская
=	

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 6

- 1. Уравнение второго начала термодинамики для обратимых и необратимых процессов. Принцип возрастания энтропии. Вычисление энтропии отдельных веществ и химической реакции. Связь энтропии реакции с химической переменной. Стандартная энтропия.
- 2. Зависимость константы равновесия химической реакции от температуры. Уравнения изохоры и изобары Вант Гоффа.

Преподаватель	к.х.н., доц. С.Н. Груше	евская	
		3	УТВЕРЖДАЮ Заведующий кафедрой
		д.х.н., доц	физической химии О.А. Козадеров

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Построение диаграммы двух взаимно растворимых жидкостей с азеотропной смесью. Смысл областей и линий. Расчет степени свободы в характерных точках по правилу фаз Гиббса. Второй закон Коновалова.
- 2. Третье начало термодинамики. Постоянная интегрирования в уравнении изобары. Расчет константы равновесия химической реакции при заданной температуре.

Преподаватель	V V H TOUL C H FDVILLEBCKAG
преподаватель	 к.х.н., доц. С.Н. Грушевская

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 8

- 1. Термодинамические потенциалы. Их связь с максимальной полезной работой. Критерии самопроизвольного протекания процесса и равновесия. Термодинамические потенциалы химической реакции. Их связь с энтальпией и энтропией химической реакции. Стандартные потенциалы.
- 2. Кинетика простых химических реакций первого порядка. Время полупревращения.

Преподаватель	к.х.н., доц. С.Н. Грушевская		
			УТВЕРЖДАЮ Заведующий кафедрой
		д.х.н., доц	физической химии О.А. Козадеров 2024

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Влияние температуры на энергию Гиббса химической реакции. Уравнение Гиббса-Гельмгольца. Связь энергии Гиббса (максимальной полезной работы) с энтальпией и энтропией химической реакции.
- 2. Химическая кинетика. Скорость, молекулярность и порядок химических реакций. Принципы химической кинетики. Понятие и лимитирующей стадии.

Преподаватель	к.х.н., доц. С.Н. Грушевская
---------------	------------------------------

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 10

- 1. Термодинамический процесс (равновесный и неравновесный, обратимый и необратимый, самопроизвольный и не самопроизвольный). Функции процесса. Теплота, работа для различных процессов (изохорический, изобарический, изотермический, адиабатический).
- 2. Получение кинетического уравнения простых химических реакций второго порядка. Графическое представление. Константа скорости. Расчет периода полупревращения.

Преподаватель	 к.х.н., доц. С.Н. Грушевская		
		д.х.н., доц	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Термодинамика фазовых превращений индивидуальных веществ. Зависимость давления насыщенного пара от температуры. Уравнение Клапейрона-Клаузиуса. Приближенное и точное решение. Истинная химическая постоянная.
- 2. Получение кинетического уравнения простых химических реакций первого порядка. Графическое представление. Константа скорости. Расчет периода полупревращения.

Преподаватель	к.х.н., доц. С.Н. Грушевская
	 711 1 - 13

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 12

- 1. Термодинамика растворов. Парциальные молярные величины. Зависимость их от состава раствора. Уравнение Гиббса-Дюгема. Его роль в термодинамике растворов.
- 2. Экспериментальные и расчетные методы определения порядка химической реакции.

Преподаватель	 к.х.н., доц. С.Н. Грушевская		
			УТВЕРЖДАЮ
			Заведующий кафедрой
			физической химии
		д.х.н., доц	О.А. Козадеров
			2024

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Химический потенциал. Связь химического потенциала с концентрацией вещества в растворе. Стандартный химический потенциал. Условие химического равновесия и самопроизвольности процессов.
- 2. Получение кинетического уравнения для обратимых реакций. Графическое представление.

Преподаватель	к.х.н., доц. С.Н. Грушевская
b	

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 14

- 1. Термодинамика жидких растворов. Зависимость давления насыщенного пара от состава жидкого раствора. Законы Рауля и Генри.
- 2. Получение кинетического уравнения для последовательных химических реакций. Графическое представление. Метод квазистационарных концентраций Боденштейна Семенова.

Преподаватель	 к.х.н., доц. С.Н. Грушевская		
			УТВЕРЖДАЮ Заведующий кафедрой физической химии
		д.х.н., доц	

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Термодинамика реальных жидких растворов. Термодинамическая активность вещества. Коэффициенты активности. Методы определения активности.
- 2. Получение кинетического уравнения для сопряженных химических реакций. Химическое сродство и скорость сопряженных химических реакций.

Преподаватель	 к.х.н., доц. С.Н. Грушевская
	 ,

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 16

- 1. Построение диаграммы состояния двух ограниченно растворимых жидкостей с верхней (или нижней) критической температурой. Пояснение областей и линий. Расчет степени свободы в характерных точках по правилу фаз Гиббса.
- 2. Теории химической кинетики. Теория активных столкновений Аррениуса. Зависимость константы скорости химической реакции от температуры. Энергия активации.

Преподаватель	 к.х.н., доц. С.Н. Грушевская		
			УТВЕРЖДАЮ Заведующий кафедрой физической химии
		д.х.н., доц	

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Расчет растворимости веществ в жидкости. Термодинамика растворения газа в жидкости.
- 2. Теории химической кинетики. Теория бинарных столкновений в химической кинетике. Константа скорости. Вероятностный (стерический) фактор.

Преподаватель	 к.х.н., доц. С.Н	<mark>Н. Грушевская</mark>

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 18

- 1. Расчет растворимости веществ в жидкости. Термодинамика растворения твердых тел в жидкости. Уравнение Шредера.
- 2. Теории химической кинетики. Теория активированного комплекса (переходного состояния) в химической кинетике. Энтропия и энтальпия активации.

Преподаватель	к.х.н., доц. С.Н. Грушевская	ı	
			УТВЕРЖДАЮ Заведующий кафедрой физической химии
		д.х.н., доц	О.А. Козадеров .2024

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- 1. Построение диаграммы состояния для двух несмешивающихся жидкостей. Распределение третьего вещества между двумя несмешивающимися жидкостями. Уравнение Нернста.
- 2. Кинетика гетерогенных химических реакций с учетом стадии диффузии вещества. Энергия активации диффузии и химической реакции.

Преподаватель	к.х.н., доц. С.Н. Грушевска	Я
. ''	 711 1 - 13	

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Контрольно-измерительный материал № 20

- 1. Коллигативные свойства растворов. Криоскопическое понижение температуры замерзания растворов. Криоскопия. Термометр Бекмана.
- 2. Катализ. Каталитическая активность, селективность и избирательность катализатора. Связь скорости каталитической химической реакции с концентрацией катализатора

Преподаватель	 к.х.н., доц. С.Н. Грушевская		
		д.х.н., доц	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров 2024

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточный

- 1. Коллигативные свойства растворов. Эбулиоскопическое повышение температуры кипения растворов. Эбулиоскопия. Термометр Бекмана.
- 2. Энергия активации гомогенного и гетерогенного катализа. Стадии адсорбции и десорбции.

Преподаватель	к.х.н., доц. С.Н. Грушевская
---------------	------------------------------

	д.х.н., доц	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная		
Контрольно-измерительный м	атериал № 22	
1. Коллигативные свойства растворов. Термодинамика осм	иотического дав	вления. Уравнение Вант-
Гоффа. 2. Получение кинетического уравнения для параллельных	реакций. Графі	ическое представление.
Преподаватель к.х.н., доц. С.Н. Грушевская		
	д.х.н., доц	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная		
Контрольно-измерительный м	атериал № 23	
 Термодинамика фазовых равновесий. Термодинамичеся Механизм химических реакций. Стадия активации. Веро Трансмиссионный коэффициент. 		

Преподаватель _____ к.х.н., доц. С.Н. Грушевская

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., доц	О.А. Козадеров
	2024

Направление подготовки / специальность 04.03.01 Химия Дисциплина Физическая химия Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

Контрольно-измерительный материал № 24

- 1. Термодинамика фазовых равновесий. Энергия Гиббса при фазовых превращениях.
- 2. Зависимость скорости химической реакции от температуры. Уравнение Аррениуса.

_	~ · · · –	
Преподаватель	к.х.н., доц. С.Н. Грушевсн	αя

Комплект КИМ № 2

	д.х.н., доц. ₋	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Хи Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации <i>:</i> промежуточная	І МИЯ	
Контрольно-измерительн 1. Потенциалы, характеризующие электрическое состовнутренний. Вольта-потенциал. Гальвани-потенциал. 2. Химические источники тока.		
Преподавате	Эль	д.х.н., доц. О.А. Козадеров
	д.х.н., доц. ₋	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Хи Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации <i>:</i> промежуточная	І МИЯ	
Контрольно-измерительно 1. Механизмы образования растворов электролито растворах. Сольватация (гидратация) иона. 2. Активное, пассивное и транспассивное состоян	ов. Роль ион-дипо	
Преподават	ель	д.х.н., доц. О.А. Козадеров
	д.х.н., доц. ₋	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Хи Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная Контрольно-измерительн 1. Классическая теория электролитической диссоциац	ый материал № :	3
теории. 2. Потенциал коррозии. Ток коррозии. Диаграммы Эва	нса и их значение) .
Преподавате	ель	д.х.н., доц. О.А. Козадеров

		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии
	д.х.н., доц.	О.А. Козадеров
		2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная	a	
Вид контроля: экзамен Вид аттестации <i>:</i> промежуточная		
Контрольно-измерительный 1. Недостатки теории Аррениуса. Механизмы образов дипольных взаимодействий в растворах.		
2. Поляризационные кривые электрода в случае заме Тафеля.	дленного пере	ехода заряда. Уравнение
Преподаватель		д.х.н., доц. О.А. Козадеров
		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии
	д.х.н., доц.	О.А. Козадеров 2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная	a	
Контрольно-измерительный	•	
1. Сольватация (гидратация) иона. Термодинамические и их практическое определение.		•
2. Уравнение Батлера-Фольмера. Коэффициенты перено	са. ток оомен	a.
Преподаватель		д.х.н., доц. О.А. Козадеров
		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии
	д.х.н., доц.	О.А. Козадеров 2024
Направление подготовки / специальность: 04.03.01 Химия	न	
Дисциплина: Физическая химия Форма обучения: очная		
Форма обучения: очная Вид контроля: экзамен		
Вид аттестации: промежуточная		
Контрольно-измерительный	материал №	6
 Основные положения теории кислот и оснований Е Теория диффузионного перенапряжения. Диффузи 		

Преподаватель _____ д.х.н., доц. О.А. Козадеров

		УТВЕРЖДАЮ Заведующий кафедрой
	д.х.н., доц. ₋	физической химии О.А. Козадеров2024
		2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		
Voutnost uo voucnustost uu iš a	.ozonuoz No	7
Контрольно-измерительный м 1. Сопряженные кислотно-основные пары. Протолитич равновесия. Ионное произведение воды. Водородный 2. Поляризационные кривые электрода в случае замед	неское и авто показатель.	протолитическое
Преподаватель		д.х.н., доц. О.А. Козадеров
		УТВЕРЖДАЮ Заведующий кафедрой физической химии
	д.х.н., доц. _.	О.А. Козадеров 2024
Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная Контрольно-измерительный и 1. Константа кислотности и константа основности. Сте	пень протоли	13a.
Поляризация электрода. Перенапряжение стадий переакции, кристаллизации. Понятие о лимитирующей ст		
Преподаватель		д.х.н., доц. О.А. Козадеров
		УТВЕРЖДАЮ Заведующий кафедрой физической химии
	д.х.н., доц. __	О.А. Козадеров 2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		
Контрольно-измерительный м	иатериал №	9
 Межионные взаимодействия в растворах электролитактивности иона и выбор стандартного состояния. Сресредняя ионная активность. Потенциометрия и ее возможности. Определение чим пределение и пределение и	дний ионный	коэффициент активности
метолом.	-	,

Преподаватель _____ д.х.н., доц. О.А. Козадеров

	д.х.н., доц.	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		
Контрольно-измерительный м 1. Химический и электрохимический потенциалы части потенциал. 2. Потенциометрия и ее возможности. Определение ст	ц. Вольта-по [.]	тенциал. Гальвани-
потенциометрическим методом.	апдартных ол	тектредных петенциалев
Преподаватель		д.х.н., доц. О.А. Козадеров
	д.х.н., доц.	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		
Контрольно-измерительный м 1 . Предпосылки и выводы теории растворов сильных з 2. Потенциометрия и ее возможности. Определение ко потенциометрическим методом.	электролитов	з Дебая-Хюккеля.
Преподаватель		д.х.н., доц. О.А. Козадеров
	д.х.н., доц.	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		
Контрольно-измерительный м 1. Кислотно-основные буферные растворы. 2.Классификация электрохимических цепей. Физические ц	-	12
		д.х.н., доц. О.А. Козадеров

		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии
	д.х.н., доц.	О.А. Козадеров
		2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная		
Вид контроля: экзамен Вид аттестации: промежуточная		
Контрольно-измерительный м 1. Произведение растворимости и условие образовани растворах.		
Классификация электрохимических цепей. Концентр переносом.	ационные це	пи без переноса и с
Преподаватель		д.х.н., доц. О.А. Козадеров
		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии О.А. Козадеров
	д.х.п., доц.	0:/\: кезадеров
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		
Контрольно-измерительный м	іатериап № 1	14
1. Основные механизмы ионного транспорта. Термодинам диффузии, миграции, конвекции. 2. Классификация электрохимических цепей. Химические	иические усло	
Преподаватель		д.х.н., доц. О.А. Козадеров
		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии
	д.х.н., доц.	О.А. Козадеров 2024
Harmondoure To Francour / and users to 04.02.04 Vigner		
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен		
Вид аттестации: промежуточная		
Контроль но изморитоль и ий м	ISTODIASTI No 1	15
Контрольно-измерительный м 1 Соотношение Нернста-Эйнштейна. Диффузия в раствор диффузионном потенциале. 2. Стандартный водородный электрод.	•	

Преподаватель _____ д.х.н., доц. О.А. Козадеров

		заведующий кафедрой
		физической химии
	д.х.н., доц.	О.А. Козадеров
		2024
Направление подготовки / специальность: 04.03.01 Химия		
Дисциплина: Физическая химия		
Форма обучения: очная		
Вид контроля: экзамен		
Вид аттестации: промежуточная		
•		
Контрольно-измерительный м	атериал №	16
1. Понятие электродного потенциала. Уравнение Нернста	для равнове	есного гальвани-
потенциала и равновесного электродного потенциала.		
2. Плотность тока и скорость электрохимической. Поляриз	вания эпектр	ода Многостадийность
электродных процессов.	ации олоктр	ода. типогоотадииноотв
олоктродных процоссов.		
Преподаватель		д.х.н., доц. О.А. Козадеров
		Hammy Hadra an arrandale an
		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии
	Д.Х.Н., ДОЦ.	О.А. Козадеров
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2024
		
Направление подготовки / специальность: 04.03.01 Химия		
Дисциплина: Физическая химия		
Форма обучения: очная		
Вид контроля: экзамен		
Вид аттестации: промежуточная		
вид аттестации. промежуточная		
Контрольно-измерительный м	атериал №	17
1. Элементы теории электропроводности Дебая-Хюккеля-		
релаксационные торможения. Эффекты Вина и Дебая-Фал		
2. Коррозия с водородной и с кислородной деполяризацие		
2. Коррозия с водородной и с кислородной деполяризацие	и. ингиоитор	лы коррозии.
Преподаватель		д.х.н., доц. О.А. Козадеров
Проподаватоль		д.х.п., дец. С. и кезадерев
		УТВЕРЖДАЮ
		Заведующий кафедрой
		физической химии
	лхн лоц	О.А. Козадеров
	дин, дод.	o., t. Rosadopob 2024
		2024
Hannan / 04 02 04 V		

УТВЕРЖДАЮ

Направление подготовки / специальность: 04.03.01 Химия

Дисциплина: Физическая химия

Форма обучения: очная Вид контроля: экзамен

Вид аттестации: промежуточная

Контрольно-измерительный материал № 18

- 1. Электрическая проводимость растворов электролитов: удельная, молярная. Электрическая подвижность ионов.
- 2. Потенциометрия и ее возможности. Определение произведения растворимости малорастворимых электролитов.

	Преподаватель		д.х.н., доц. О.А. Козадеров
			УТВЕРЖДАЮ
			Заведующий кафедрой
			физической химии
		д.х.н., доц	О.А. Козадеров
			2024
Направление подготовки / специальнос Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная	ть: 04.03.01 Химия		
вид аттестации. промежуточная			
_	измерительный м	атериал № 1	9
1. Химические источники тока.		SOTTONO FLAV	COST. EDOĞULOFO
Двойной электрический слой на гр электрического слоя.	занице металла и р	аствора. ⊏мк	ость двоиного
электрического слоя.	Преподаватель		д.х.н., доц. О.А. Козадеров
			VTDEDWGAIO
			УТВЕРЖДАЮ Заведующий кафедрой
			физической химии
		лхн лош	О.А. Козадеров
		д.х, доц	2024
Направление подготовки / специальнос Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная	ть: 04.03.01 Химия		
	u u		_
1. Влияние различных факторов на электропроводность ионов.	измерительный м ктропроводность ра	•	
2. Классификация электрохимических ц	епей. Химические і	цепи.	
	Преподаватель		д.х.н., доц. О.А. Козадеров
			VTDEDWAA
			УТВЕРЖДАЮ Заведующий кафедрой
		E V II - EOII	физической химии
		д.х.н., доц. __	О.А. Козадеров 2024
Hermanian and a second district of the second	04 02 04 V		
Направление подготовки / специальнос Дисциплина: Физическая химия	RNMNA I U.CU.+U .di		
Форма обучения: очная			
Вид контроля: экзамен			
Вид аттестации: промежуточная			

Контрольно-измерительный материал № 21

- 1. Предельная электрическая подвижность ионов. Закон Кольрауша и следствия из него. Правило Вальдена-Писаржевского.
- 2. Адсорбция и электрокапиллярные кривые. Потенциал нулевого заряда. Уравнение Липпмана.

Преподаватель		д.х.н., доц. О.А. Козадеров
Į	д д.х.н., доц. _.	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		
Контрольно-измерительный м 1. Равновесная электрохимическая цепь. Напряжение с потенциалами отдельных электродов. Анод и катод в э 2. Потенциал Доннана. Мембранный потенциал. Ионсе электрод.	электрохимич лектрохимич	неской цепи, связь с еской цепи.
Преподаватель		д.х.н., доц. О.А. Козадеров
	д.х.н., доц. _.	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров2024
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная Контрольно-измерительный м 1. Основное уравнение электрохимической термодинам для напряжения электрохимической цепи. 2. Потенциал коррозии. Ток коррозии. Диаграммы Эван	мики. Уравне	ние Гиббса-Гельмгольца
Преподаватель		д.х.н., доц. О.А. Козадеров
	Д.Х.Н., ДОЦ. _.	УТВЕРЖДАЮ Заведующий кафедрой физической химии О.А. Козадеров
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия Форма обучения: очная Вид контроля: экзамен Вид аттестации: промежуточная		2024
Контрольно-измерительный м	атериал № 2	24
 Классификация электродов. Электроды первого рода Окислительно-восстановительные электроды. Модельные представления о строении двойного эле 		
Преполаватель		лхн лоц ОА Козалеров

		У	ТВЕРЖДАЮ
			ий кафедрой
			ческой химии
	д.х.н., доц		
	· · · · · · · · · · · · · · ·		2024
Направление подготовки / специальность: 04.03.01 Химия			
Дисциплина: Физическая химия			
Форма обучения: очная			
Вид контроля: экзамен			
Вид аттестации: промежуточная			
Контрольно-измерительный м	иаториал No. 25	•	
1. Газовые электроды. Водородный электрод.	•		Диаграмма
электрохимической устойчивости воды.	тинопородный	олоктрод.	диагранна
 Поляризационные кривые электрода в случае замедле 	нной диффузии	и. Предельнь	ІЙ
диффузионный ток.	···· H.··+ +) -···	родоль	
Преподаватель	л	тхн лон О	А Козалеров
Проподаватоль		,.х.н., доц. о.	л. повадоров
		У	ТВЕРЖДАЮ
			ий кафедрой
		физи	ческой химии
	д.х.н., доц	O.	А. Козадеров
			2024
Harris			
Направление подготовки / специальность: 04.03.01 Химия Дисциплина: Физическая химия			
дисциплина. Физическая химия Форма обучения: очная			
Форма обучения. очная Вид контроля: экзамен			
Вид аттестации: промежуточная			
Контрольно-измерительный м	иатериал № 26		
1. Окислительно-восстановительные электроды. Правило			ктрод.
2. Диффузионный потенциал и методы его устранения.			
Преподаватель	л	ьх.н., доц. О	А. Козадеров
роподаватоль		······, n- n. o.	

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и степень сформированности умений и навыков в области физической химии. При оценивании используются количественные шкалы оценок. Критерии оценивания приведены выше.

Критерии оценивания при промежуточной аттестации:

критерии оценивания при промежуточной аттестации.		
Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Обучающийся в полной мере владеет теоретическими основами физической химии и электрохимии, способен иллюстрировать	Повышенный уровень	Отлично (Зачтено)
ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач в области электрохимической термодинамики и электрохимической кинетики		
Обучающийся владеет теоретическими основами физической химии и электрохимии, способен иллюстрировать ответ примерами, допускает ошибки при применении теоретических знаний для решения практических задач в области электрохимической термодинамики и электрохимической кинетики	Базовый уровень	Хорошо (Зачтено)
Обучающийся владеет частично теоретическими основами физической химии и электрохимии, фрагментарно способен иллюстрировать ответ примерами, фрагментарно умеет применять теоретические знания для решения практических задач в области электрохимической термодинамики и электрохимической кинетики	Пороговый уровень	Удовлетвори- тельно (Зачтено)
Обучающийся демонстрирует отрывочные, фрагментарные знания теоретических основ физической химии и электрохимии, допускает грубые ошибки при применении теоретических знаний для решения практических задач в области электрохимической термодинамики и электрохимической кинетики	-	Неудовлетвори- тельно (Не зачтено)

При реализации дисциплины с применением дистанционных образовательных технологий оценки за экзамен/зачет могут быть выставлены по результатам текущей аттестации обучающегося в семестре.

20.3. Оценочные средства для диагностической работы

ОПК-1

<u>Закрытые</u>

- 1. Какая форма записи первого начала термодинамики является правильной:
- a) $dU = \delta Q \delta A$;
- δ) δQ = dU + δA
- $B) \delta A = dU + \delta Q$

- г) верны а) и б)
- д) не верен ни один вариант
- 2. Истинной молярной теплоемкостью называется:
- а) количество теплоты, необходимое для нагревания системы на градус;
- б) количество теплоты, необходимое для нагревания 1 моль вещества на градус; в) количество теплоты, необходимое для нагревания 1 моль вещества на градус при постоянном давлении;
- г) количество теплоты, необходимое для нагревания 1 моль вещества на градус при

постоянном объеме;

- д) верного ответа нет.
- 3. Если разность теплоемкостей продуктов реакции и исходных реагентов равна нулю, то тепловой эффект химической реакции с уменьшением температуры может:
 - а) только уменьшаться;
 - б) только расти;
 - в) сначала увеличиваться, затем уменьшаться;
 - г) зависит от знака изменения теплоемкости;
 - д) не изменяется при изменении температуры.
- 4. Теплоемкость идеального газа в изотермической системе:
 - а) равна нулю;
 - б) стремится к бесконечности;
 - в) зависит от строения молекулы
 - г) для изотермической системы такого понятия не существует;
 - д) верного ответа нет.
- 5. Работа расширения 1 моль идеального газа больше:
 - а) в изотермическом процессе
 - б) в адиабатическом процессе;
 - в) в изохорном процессе;
 - г) в изобарном процессе;
 - д) во всех процессах одинакова.
- 6. Для необратимого процесса уравнение второго закона термодинамики выглядит следующим образом:
 - a) $dS = \delta Q/T;$ б) $dS \ge \delta Q/T;$ в) $dS \le \delta Q/T;$ г) $dS > \delta Q/T;$ д) верного ответа нет.
- 7. Процесс кристаллизации воды сопровождается уменьшением энтропии. Следовательно данный процесс:
- а) самопроизвольный; б) несамопроизвольный; в) равновесный;
- г) в данном случае изменение энтропии процесса не является критерием; д) верного ответа нет.
- 8. Процесс расширения идеального газа проводят сначала обратимо, а затем необратимо. Какая из термодинамических функций будет от этого зависеть:
- а) работы; б) изменение энтропии; в) изменение энергии Гиббса;
- г) изменение внутренней энергии; д) любой из перечисленных.
- 9. 1 моль аргона и 1 моль азота нагрели на 40° в изохорных условиях. Изменение энтропии для какого газа больше:
- а) аргона; б) азота; в) одинаково для обоих газов;
- г) в этих условиях энтропия не изменяется;
- д) величина изменения энтропии зависит от начального давления газа.
- 10. Условие химического равновесия в системе имеет вид:
- a) $\Delta\mu_I > 0$ б) $\Sigma\mu_i\nu_i = 0$ в) $\Sigma\mu_i\nu_i < 0$ г) $\Sigma\mu_i\nu_i > 0$ д) верного ответа нет.
- 11. Константа равновесия реакции $2CO_2 = 2CO + O_2$ должна быть записана так:

12. Равновесный выход продуктов реакции $CO + 2H_2 = CH_3OH$, протекающей в идеальной

а) увеличится б) уменьшится в) не изменится
г) сначала увеличится, потом уменьшится.
13. Различие между значениями констант K_C и K_X существует:
а) всегда; б) различия нет;
в) только для гетерогенных систем; г) если $\Delta v_{raзa} \neq 0$; д) если $\Delta v_{raзa} = 0$. 14. Как рассчитать константу равновесия реакции, если известно значение $\Delta G^{o}_{P,T}$: а) $\ln(\Delta G^{o}_{P,T}) = -RTK_{P}$; б) $\Delta G^{o}_{P,T} = -RTexp(K_{P})$; в) $\Delta G^{o}_{P,T} = -RTlnK_{P}$; г) расчет невозможен.
15. Фракционной перегонкой смесь двух компонентов можно разделить на чистые вещества, если:
а) на диаграмме жидкость-пар имеется азеотропная точка;
б) на диаграмме жидкость-пар нет азеотропной точки;
в) если компоненты не смешиваются;
г) если компоненты смешиваются ограниченно;
д) в любом случае можно разделить.
16. Диаграмма состояния вода-анилин имеет верхнюю критическую температуру. При
этом с ростом температуры взаимная растворимость двух жидкостей:
а) уменьшается; б) не меняется; в) увеличивается;
г) характер изменения зависит от концентрации компонентов.
17. Энергия активации простой реакции с ростом температуры:
а) растет; б) не меняется; в) уменьшается; г) может меняться по разному.
18. Температурный коэффициент Вант-Гоффа равен 3. Температура при протекании реакции типа A=B увеличилась на 30 градусов. Скорость реакции при этом увеличилась: а) в 27 раз; б) в 9 раз; в) в 6 раз; г) в 81 раз;
д) кратность определяется внешним давлением
19. Реакции, одна из которых возможна только при одновременном протекании второй, называются:
а) сопряженными б) обратимыми в) последовательными
г) параллельными д) каталитическими.
<u>Открытые</u>
20. Водный раствор хлорида натрия объемом 1 дм 3 с концентрацией $0,10$ моль/дм 3 разлили в две мерные колбы емкостью 500 см 3 . Чему равна концентрация раствора в каждой колбе? Ответ дайте в моль/дм 3 с точностью до сотых.
21. Имеются водные растворы мочевины и глюкозы одинаковой концентрации 0,005
моль/кг. Сравните между собой температуры кристаллизации этих растворов.

22. Сколько фаз, составных частей и компонентов содержит система, в которой возможно протекание реакции 2 $NH_{3(r)} = N_{2(r)} + 3 H_{2(r)}$? Ответ дайте в виде

23. При атмосферного давления температура кипения воды может быть выше

последовательности трех цифр без пробелов и знаков препинания.

100 °С. (вставьте пропущенное слово)

газовой смеси при увеличении давления:

24. Теплоты сгорания графита и алмаза при стандартных условиях составляют -393,5 и -395,4 кДж/моль соответственно. Чему равен тепловой эффект перехода 120 г графита в алмаз? Ответ дайте в кДж с точностью до целого числа.

<u>Ключи для ОПК-1</u>

Вопросы	1	2	3	4	5	6	7	8	9
Ответы	Γ	Д	Д	Б	Γ	Γ	Γ	A	Б
Вопросы	10	11	12	13	14	15	16	17	18
Ответы	Б	Γ	A	Γ	В	Б	В	Б	A
Вопросы	19	20	21	22	23	24			
Ответы	A	0,10	Равны	131	повышении	19			
			(одинаковы)						

ОПК-2

<u>Закрытые</u>

- больше (по модулю), чем суммарная теплота гидратации ионов K^{z+} и A^{z-} . Тепловой эффект процесса растворения этой соли:
 - а) экзотермичен; б) эндотермичен; в) отсутствует; г) может быть любым.
- 2. Тепловой эффект реакции: $C + \frac{1}{2}O_2 + 2H_2 \rightarrow CH_3OH$ можно считать
 - а) теплотой образования метанола;
- б) теплотой сгорания углерода;
- в) теплотой сгорания водорода;
- г) подходит любое из перечисленных.
- Термодинамические законы применимы к системам, состоящим из:
 - а) нескольких частиц;

- б) нескольких сотен частиц;
- в) числа частиц, сравнимого с числом Авогадро; г) к любому числу частиц.
- 4. Для некоторой реакции теплоемкость продуктов меньше теплоемкости исходных веществ. Тепловой эффект этой реакции с ростом температуры:
 - а) увеличивается;
- б) уменьшается;
- в) может как увеличиваться, так и уменьшаться;
- г) не зависит от температуры.
- 5. 1 моль аргона и 10 моль водорода изохорически нагревают на 100°. В каком случае работа, совершенная газом, будет больше:
 - а) для аргона; б) для водорода; в) одинакова;
 - г) это зависит от начальной температуры и давления.
- 6. Теплота нейтрализации раствора некоторой кислоты НА оказалась равна теплоте нейтрализации раствора соляной кислоты в тех же условиях, следовательно, кислота HA - это:
 - а) слабый электролит;
- б) сильный электролит;
- в) теплоты нейтрализации кислот всегда различаются, и о силе электролита ничего сказать нельзя;
- г) теплоты нейтрализации любых кислот всегда совпадают.
- 7. Какие параметры необходимо поддерживать постоянными, чтобы по знаку изменения энтропии можно было судить о направлении самопроизвольного процесса?
 - a) P, T;
- б) U, V;
- в) V, Т;
- г) U, P.

- 8. В каком из перечисленных ниже обратимых процессов с 1 моль идеального газа изменение энтропии будет максимальным? а) нагревание от 300 К до 400 К при постоянном давлении; б) нагревание от 300 К до 400 К при постоянном объеме; в) изотермическое расширение от 300 м^3 до 400 м^3 ; г) адиабатическое расширение от 300 м^3 до 400 м^3 . 9. Может ли константа равновесия химической реакции не меняться с температурой: а) да, если ΔH ≠ const; б) да, если $\Delta H = 0$; в) константа всегда зависит от температуры; Γ) да, если ΔV = const. 10. Процесс взаимодействия основания с кислотой является экзотермической реакцией. Что произойдет с положением равновесия и величиной K_C , если увеличить температуру: а) ничего не изменится; б)константа не изменится, равновесие сместится в сторону образования продуктов;

 - в) константа уменьшится, равновесие сместится в сторону образования исходных веществ;
 - г) константа увеличится, равновесие не сместится.
 - 11.С ростом температуры степень диссоциации газообразного хлорида водорода по реакции 2 HCl = Cl₂ + H₂ (Δ H > 0):
 - а) растет
- б) уменьшается
- в) не меняется
- г) такая реакция не возможна.
- 12. При 26 °C константа равновесия процесса $FeO + HCl = FeCl_2 + H_2O$ больше, чем в этих же условиях, но при 20 °C. Что можно сказать о знаке теплового эффекта этого процесса:
 - a) $\Delta H > 0$
- δ) Δ H<0
- в) может быть как <, так и > 0
- Γ) $\Delta H = 0$
- 13. Сколько составных частей и сколько компонентов содержит система $Na_2O_{(TB)} + SO_{3(\Gamma)} = Na_2SO_{4(TB)}$:
 - а) 3 и 3
- б) 3 и 2
- в) 2 и 2
- г) 2 и 3
- 14. Какое агрегатное состояние лед или жидкая вода будет более устойчивым при 273 Ки 1 атм:
 - в) одинаково устойчивы оба; г) не устойчивы оба. а) лед; б) жидкость;
- 15. Можно ли превратить жидкую фазу в пар без нагревания:
 - а) да, нужно увеличить давление;
- б) да, нужно уменьшить давление;
- в) это зависит от природы вещества; г) такое не возможно.
- 16. Над какой жидкостью вода или водный раствор мочевины давление насыщенного водяного пара выше:
 - а) над раствором;

- б) над водой;
- в) одинаково над обеими;
- г) правильного ответа нет.
- 17. Наличие катализатора:
 - а) увеличивает скорость как прямой, так и обратной реакции;
 - б) увеличивает скорость прямой реакции и уменьшает скорость обратной реакции;
 - в) позволяет протекать термодинамически запрещенному процессу;
 - г) увеличивает время достижения равновесия.

Открытые

18.В дистиллированной воде массой 180 г растворили 5,85 г хлорида натрия. Вычислите

- молярную долю хлорида натрия в этом растворе. Ответ приведите с точностью до дву значащих цифр. Разделитель запятая.
- 19. Сколько льда (кг) растает, если лед массой 5 кг и температурой 0°С опустить в воду массой 10 кг и температурой 0°С? Ответ приведите с точностью до целых.
- 20. Для некоторой реакции константа скорости при температуре 300 К составляет 0,3 л·моль⁻¹ мин⁻¹, а температурный коэффициент реакции равен 3. Рассчитайте значение константы скорости реакции при температуре 320 К. Ответ приведите в л·моль⁻¹ мин⁻¹ с точностью до десятых. Разделитель запятая.
- 21. Ацетатный буферный раствор, содержащий по 0,10 моль кислоты и соли разбавили водой в 10 раз. Что произошло с величиной рН? Как поменялась буферная емкостью? Дайте два ответа как два отдельных предложения.
- 22. Растворимость хлорида серебра в растворе хлорида калия _____, чем в воде. (вставьте пропущенное слово)

Ключи для ОПК-2

Вопросы	1	2	3	4	5	6	7	8	9
Ответы	Б	A	В	Б	В	Б	Б	A	Б
Вопросы	10	11	12	13	14	15	16	17	
Ответы	В	Α	A	Б	В	Б	Б	A	
Вопросы	18	19	20	21	22				
Ответы	0,0099	0	2,7	Не	Меньше				
				изменилась.					
				Уменьшилась.					
				Или:					
				Величина рН					
				не					
				изменилась.					
				Буферная					
				емкость					
				уменьшилась.					

ОПК-3

<u>Закрытые:</u>

- 1. При постоянстве каких параметров энтальпия химической реакции равна ее теплоте:
- а) V, T; б) P, T; в) S; Р г) U; V д) иные параметры и их сочетания.
- 2. Определите правильный ряд расположения теплоемкостей газообразных веществ при одинаковой температуре:
- а) $C_P(H_2O(пед)) > C_P(H_2O(пар));$
- 6) $C_P(Ar) > C_P(N_2) > C_P(H_2O_{(\pi ap)})$
- B) $C_P(Ar) = C_P(N_2) = C_P(H_2O_{(\Pi ap)})$
- Γ) $C_P(Ar) < C_P(N_2) < C_P(H_2O_{(\pi ap)})$.
- 3. Различаются ли теплоты нейтрализации 0,1 M растворов HCOOH и HNO₃ раствором щелочи одинаковой концентрации:
- а) да; б) нет;
- в) зависит от внешнего давления;
- г) по приведенным данным однозначный вывод невозможен.
- 4. При P=const азот и аргон нагревают на 20° . Количество теплоты, затраченное на нагревание:

- а) больше для азота; б) больше для аргона;
- в) одинаково для обоих газов; г) зависит от начальной температуры газов.
- 5. Значение K_P реакции $2NH_3 = N_2 + 3H_2$ в газовой фазе при уменьшении общего давления в 2 раза:
- а) уменьшится б) не изменится в) увеличится
- г) может как увеличится, так и уменьшится.
- 6. Может ли константа равновесия химической реакции уменьшаться с ростом температуры:
- а) да, если Δ H ≠ const;

- б) да, если $\Delta H < 0$;
- в) константа не зависит от температуры;
- Γ) да, если $\Delta H = 0$.
- 7. Что нужно для увеличения полноты протекания процесса

$$NH_{3(\Gamma)} + HCl_{(\Gamma)} = NH_4Cl_{(TB)} (\Delta H < 0)$$

- а) увеличить общее давление и температуру;
- б) уменьшить общее давление и температуру;
- в) увеличить общее давление и уменьшить температуру;
- г) давление и температура не влияют на выход продукта.
- 8. Укажите условие, при котором для расчета температурной зависимости константы равновесия можно пользоваться уравнением $\ln \frac{K_{T_2}}{K_{T_1}} = \frac{\Delta H}{R} \left(\frac{1}{T_1} \frac{1}{T_2} \right)$:
- a) $\Delta H = 0$;
- δ) ΔH = const;
- B) $\Delta H \neq 0$;
- г) такого условия нет.
- 9. Имеются два раствора одинаковой концентрации. В первом растворенный компонент летучий, во втором нелетучий. Значения давления насыщенного пара над этими растворами:
- а) одинаково;
- б) над первым выше;
- в) над вторым выше;
- г) по имеющимся данным ответить нельзя.
- 10. Имеются водные растворы хлорида натрия и хлорида калия одинаковой концентрации. Сравните температуры кристаллизации этих растворов:
- а) одинакова; б) у первого раствора выше;
- в) у второго раствора выше; г) по имеющимся данным ответить нельзя.
- 11. Криоскопическая постоянная не зависит:
- а) от природы растворителя; б) от природы растворенного вещества;
- в) от внешнего давления;
- г) верного ответа нет.
- 12. Растворимость твердого вещества в жидкости больше:
- а) в идеальном растворе;
- б) в растворе с положительными отклонениями от закона Рауля;
- в) в растворе с отрицательными отклонениями от закона Рауля;
- г) растворимость зависит только от температуры.
- 13. Согласно закону Коновалова состав жидкости по сравнению с составом равновесного с ней пара:
- а) такой же;
- б) обогащен менее летучим компонентом;
- в) обогащен более летучим компонентом;
- г) верного ответа нет.
- 14. При определении порядка химической реакции графическим методом получили линейную зависимость в координатах $\ln c t$. Какой порядок имеет данная реакция:

- а) нулевой; б) первый; в) второй; г) третий.
- 15. При уменьшении начальной концентрации исходных веществ ($c_A{}^0 = c_B{}^0$) в два раза время полупревращения в реакции второго порядка:
- а) увеличится в два раза;
- б) уменьшится в два раза;
- в) увеличится в четыре раза;
- г) не изменится
- 16. Для реакции первого порядка А — В при начальной концентрации исходного вещества $c_A = 1$ моль· π^{-1} время полупревращения составило 1250 секунд. Каково значение времени полупревращения при $c_A = 2.5$ моль· π^{-1}
- a) 6250 c;
- б) 1250 c; в) 2500 c; г) 5000 с.
- 17. Константа скорости химической реакции зависит от следующих факторов:
- а) время, температура, концентрация участников реакции;
- б) концентрация участников реакции, температура;
- в) время, механизм реакции, температура;
- г) механизм реакции, температура.
- 18. Потенциал какого из электродов не зависит от рН среды:
- а) водородного; б) хингидронного;
- в) каломельного;
- г) стеклянного.
- 19. Буферным действием обладает смесь оксалата калия с:
- а) уксусной кислотой;
- б) лимонной кислотой;
- в) щавелевой кислотой;
- г) ортофосфорсной кислотой.
- 20. Для раствора 1 моль/л $Na_2SO_4 + 1$ моль/л H_2SO_4 ионная сила равна:
- а) 4 моль/л;
- б) 5 моль/л;
- в) 6 моль/л
- г) 2 моль/л;

д) верного ответа нет

Открытые:

- Йод распределяется между толуолом и водой. Концентрация йода в толуоле гораздо больше концентрации вода в воде. Как соотносятся между собой химические потенциалы йода в обеих фазах в состоянии равновесия.
- 22. Константа и степень диссоциации электролитической диссоциации слабого электролита связаны соотношением: $K = \alpha^2 c/(1-\alpha)$. Что происходит с константой диссоциации по мере увеличения концентрации раствора С?
- 23. На диаграмме состояния температура-состав двухкомпонентной системы (P= const) имеются точки, для которых степень свободы равна двум. Какому числу равновесных фаз она отвечает?
- 24. В насыщенный водный раствор бромида серебра добавлен бромид натрия. Как изменилась растворимость? Как изменилось произведение растворимости бромида серебра? Дайте два ответа, разделив их запятой.
- 25. Поддерживает ли ацетатный буферный рН водного раствора, равный 12,0? (pK _{CH3COOH}=4,75).

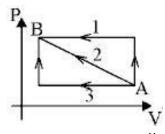
Ключи для ОПК-3

Вопросы	1	2	3	4	5	6	7	8	9
Ответы	Б	Γ	A	A	Б	Б	В	Б	Б
Вопросы	10	11	12	13	14	15	16	17	18
Ответы	A	Б	В	Б	Б	Б	Б	Γ	В
Вопросы	19	20	21	22	23	24	25		

Ответы	В	В	Равны	Не	Одна	Растворим	Нет (не	
				изменя	фаза	ость	поддержи	
				ется (не		уменьшитс	вает)	
				меняетс		я,		
				я)		произведен		
						ие		
						растворим		
						ости не		
						изменится		

ОПК-6

Открытые:


1. При 298 К ионные произведения воды и этилового спирта $K_W(H_2O)=10^{-14}$ и $K_W(C_2H_5OH)=10^{-20}$. В нейтральном водном и этанольном растворах:

- a) $pH(H_2O) > pH(C_2H_5OH)$;
- б) $pH(H_2O) < pH(C_2H_5OH)$;
- B) $pH(H_2O) = pH(C_2H_5OH)$;
- г) верного ответа нет
- 2. Удельная электропроводность водного раствора сильного электролита с ростом его концентрации c вначале растет, а затем снижается. Появление участка снижения электропроводности на зависимости обусловлено:
- а) изменением механизма миграционного переноса;
- б) изменением числа носителей заряда;
- в) нарастающим влиянием межионных взаимодействий;
- г) изменением молярной электропроводности.
- 3. Скорость химической реакции при увеличении ее энергии активации:
- а) повышается;
- б) убывает;
- в) не изменяется;
- г) может изменяться по разному; д) это зависит от температуры.
- 4. В соответствии с принципом лимитирующей стадии химической реакции:
- а) скорость любой сложной химической реакции определяется скоростью самой медленной ее стадии;
- ее стадии; в) скоростью самой мелленной сталии определяется скорость сложной химической
- в) скоростью самой медленной стадии определяется скорость сложной химической реакции, если она состоит из ряда параллельных реакций;
- г) скоростью самой быстрой стадии определяется скорость сложной химической реакции, если она состоит из ряда параллельных реакций.

б) скорость любой сложной химической реакции определяется скоростью самой быстрой

- 5. Выберите уравнение реакции, соответствующее стандартной энтальпии образования $\Delta_r H_{298}^{\text{o}}$ соединения $Ca(H_2PO_4)_2 \cdot H_2O$:
- a) $Ca(H_2PO_4)_2(\kappa p) + H_2O(\mathfrak{m}) = Ca(H_2PO_4)_2 \cdot H_2O(\kappa p);$
- б) Ca(тв) + 6 H(г) + 2 P(красный) + 9 O(г) = Ca(H₂PO₄)₂·H₂O (кр);
- в) $Ca(тв) + 2 P(белый) + 4,5 O_2(г) = Ca(H_2PO_4)_2 \cdot H_2O(кр);$
- г) верного ответа нет.
- 6. Какие состояния различных газов или жидкостей называют соответственными: а) состояния при одинаковых температурах и давлениях;
- б) состояния при одинаковых объемах и температурах;
- в) состояния разных веществ, имеющие одинаковые значения приведенных переменных;
- г) состояния различных веществ, имеющие одинаковые критические объемы.

- 7. Идеальный газ расширяется от объема V1 до объема V2. Работа расширения будет максимальной, если газ расширяется
- а) обратимо и изотермически;
- б) обратимо и адиабатически;
- в) необратимо изотермически;
- г) обратимо и изобарически.
- 8. В каких случаях можно пренебречь разностью между изменением энтальпии и изменением внутренней энергии реакции:
- а) если в реакции участвуют только вещества в конденсированном состоянии;
- б) если все участники реакции газообразные вещества;
- в) если в ходе реакции давление не изменяется;
- г) если реакция протекает при постоянной температуре.
- 9. Переход газа из состояния А в состояние В можно осуществить тремя способами (см.рис). В каком случае работа над газом минимальна?
- а) по пути 1
- б) по пути 2
- в) по пути 3
- г) одинакова во всех случаях
- д) одинакова и минимальна для пути 1 и 3.

- 10. Для некоторой реакции изменение теплоемкости как функция о температуры представлена уравнением $\Delta C_P = \Delta a + \Delta b T + \Delta c T^2$, где Δa ; Δb и Δc коэффициенты, которые больше нуля. Как
- зависит тепловой эффект реакции от температуры: а) с ростом температуры снижается б) с понижен
 - б) с понижением температуры растет

в) не меняется

- г) с понижением температуры снижается
- 11. При давлении $26,6\cdot10^3$ Па циклогексан (ц) и этилацетат (э) кипят при одинаковой температуре. Чем можно объяснить, что при нормальном давлении $T_{\text{кип}}$ циклогексана выше $T_{\text{кип}}$ этилацетата на $3,6\,^{\circ}\text{C}$:
 - a) $\Delta V_{\text{nap}}(\underline{u}) > \Delta V_{\text{nap}}(\underline{\vartheta});$
- δ) $\Delta V_{\text{пар}}$ (χ) $\leq \Delta V_{\text{пар}}$ (ϑ);
- B) $\Delta H_{\text{исп}}(\Pi) > \Delta H_{\text{исп}}(\Im)$;
- Γ) $\Delta H_{\text{исп}}(\mathbf{u}) \leq \Delta H_{\text{исп}}(\mathbf{u})$.
- 12. Чему равно $\Delta G_{\text{исп}}$ и $\Delta F_{\text{исп}}$ при равновесном испарении 1 моль жидкости при температуре T, если пар считать идеальным газом:
 - a) $\Delta G = -RT$, $\Delta F = 0$; 6) $\Delta G = 0$, $\Delta F = -RT$; B) $\Delta G = \Delta F = RT$; Γ) $\Delta G = \Delta F = 0$.
- 13.Имеется идеальный раствор из летучего (А) и нелетучего (В) компонентов. Как меняется общее давление насыщенного пара над раствором с изменением состава:
 - а) понижается с ростом концентрации В
- б) не меняется
- в) повышается с ростом концентрации В
- г) это зависит от температуры
- 14.По закону Генри растворимость газов:
 - а) увеличивается с уменьшением его давления;
 - б) не зависит от давления газа;
 - в) увеличивается с возрастанием давления газа;
 - г) определяется только константой Генри.
- 15. Согласно I закону Коновалова в паре над раствором больше по сравнению с раствором
 - а) растворителя;
- б) растворенного вещества;
- в) растворителя и растворенного вещества поровну;
- г) легколетучего компонента.
- 16. Если на диаграмме растворимости имеется нижняя критическая температура, то с ростом температуры взаимная растворимость:

две жидкости:

- а) не меняется;
- б) сначала повышается, затем понижается;
- в) повышается;
- г) понижается.
- 17. Могут ли порядок реакции и молекулярность быть дробными величинами:
 - а) нет;
- б) да;
- в) порядок да, молекулярность нет;

- г) молекулярность да, порядок нет.
- 18. Если температура, константы скорости и начальные концентрации исходных веществ одинаковы, то реакция какого порядка завершится раньше:
 - а) второго
- б) нулевого;
- в) первого;
- г) третьего
- 19. Для определения константы скорости реакции второго порядка графическим методом следует построить график в координатах:
 - a) $\ln c t$;
- б) 1/c t; в) 1/c 1/t;
- Γ) c-1/t
- д) верного ответа нет.

Открытые

- 20. Для графического определения значения энергии активации в уравнении Аррениус необходимо построить координатах график 1n k В 1) Верно; 2) Неверно.
- 21.Согласно теории Аррениуса рассчитайте значение рН и рОН водного раствор гидроксида калия с концентрацией 0,01 М. В ответе приведите два целых числа разделенных одним пробелом.
- 22. Имеются водные растворы глюкозы и хлорида натрия одинаковой концентрации Сравните осмотическое давление этих двух растворов. Являются ли эти растворо изотоническими? Приведите два ответа как два отдельных предложения.
- 23. Пусть имеется 1 моль воды в разных агрегатных состояниях: пар, жидкость и лёд Сравните между собой энтропии трех агрегатных состояний.
- 24.В элементарной реакции типа 2А \rightarrow В начальная концентрация вещества А равна моль \cdot л $^{-1}$. Через 10 мин от начала реакции концентрация вещества В составила 0, моль \cdot л $^{-1}$. Вычислите константу скорости этой реакции. Ответ приведите в [л моль $MИH^{-1}$] с точностью до десятых.

Ключи для ОПК-6

Вопросы	1	2	3	4	5	6	7	8	9
Ответы	Б	В	Б	Γ	Б	В	Γ	A	В
Вопросы	10	11	12	13	14	15	16	17	18
Ответы	Γ	В	Б	A	В	Γ	Γ	В	Γ
Вопросы	19	20	21	22	23	24			
Ответы	В	1	12;2	Осмотичес	Энтропия	0,9			
				кое	пара				
				давление	наибольш				
				раствора	ая,				
				хлорида	энтропия				
				натрия	льда -				
				больше,	наименьш				
				чем	ая.				
				раствора					
				глюкозы.					
				Растворы					

		не			
		являются			
		изотоничес			
		кими.			

1. Приводимые в таблицах стандартные тепловые эффекты химических реакций, протекающих без

ПК-1

n		
` ⊀ ΩТ/1	nt t	LI IO
Зак	UDI.	ı dı C.

участия газов, 1) при постоянном давлении и 2) при постоянном объеме:
а) первый меньше второго; в) равны между собой;
б) первый больше второго; г) возможны все варианты.
2. Справочные данные по теплоемкостям газов позволяют сделать заключение:
а) отношение C_p/C_v больше единицы; в) отношение C_p/C_v равно единице;
б) отношение C_p/C_v меньше единицы; г) отношение C_p/C_v стремится к нулю.
3. Согласно справочным данным энергия разрушения кристаллической решетки некоторой соли
больше, чем суммарная теплота сольватации катиона и аниона (по модулю) этой же соли. Это
обозначает, что процесс растворения соли:
а) экзотермичен; в) тепловой эффект отсутствует;
б) эндотермичен; г) возможны все варианты.
4. Сравните между собой табличные значения энтропии (при стандартной температуре)
1 моль кристаллического вещества $(S_{\kappa p})$ и 1 моль его паров (S_{π}) :
a) $S_{\kappa p} > S_{\pi}$;
б) $S_{\kappa p} < S_{\pi}$; г) возможны все варианты
5. Для раствора вещества А в растворителе В выполняется закон Генри; константы Генри можно
найти в справочниках. Как связаны между собой стандартные химические потенциалы
вещества А в паровой и жидкой фазах?
a) $\mu^{*}(A) > \mu^{\text{nap}}(A);$ b) $\mu^{*}(A) = \mu^{\text{nap}}(A);$
б) $\mu^{\text{ж}}(A) < \mu^{\text{пар}}(A);$ г) возможны любые соотношения в зависимости от условий.
6. На диаграмме состояния давление-температура однокомпонентной системы имеются точки, для
которых степень свободы равна двум. Какому числу равновесных фаз она отвечает:
a) 1; б) 2; в) 3; г) 4.
7. С ростом температуры константа равновесия химической реакции:
а) повышается; б) убывает;
в) не изменяется; г) возможны любые варианты.
8. С ростом концентрации реагентов равновесный выход продуктов химической реакции:
а) повышается; б) убывает; в) не изменяется.
9. Если имеются справочные данные по кристаллохимическим радиусам двух ионов с
одинаковыми зарядами $z_1 = z_2$, можно ли определить, в сольватной оболочке какого из двух ионов
содержится большее число молекул растворителя:
а) у иона с большим кристаллохимическим радиусом;
б) у иона с меньшим кристаллохимическим радиусом;
в) не зависит от размера иона;
г) определить нельзя.
10. Процесс электролитической диссоциации некоторой соли описывается уравнением:
$KA=v_{+}K^{z_{+}}+v_{-}A^{z_{-}}$ Какая термодинамическая активность может быть оценена экспериментально:
a) катиона (a ₊); б) аниона (a ₋);
в) средне-ионная (a _±); г) любая из перечисленных.
11. Согласно общепринятой классификации электродов какая из систем представляет равновесный
окислительно-восстановительный электрод:
a) $Cu \mid Cu^+, Cu^{2+};$ 6) $Cu \mid Cu^{2+};$
в) $Pt \mid Ag^+, Cu^{2+}$ г) $Pt \mid Cu^+; Cu^{2+}$.

а) не изменяется;	б) растет;	з) падает; г)	меняется сложным образом.
			и $M_2 \mid L_2 \parallel L_1 \mid M_1$ меньше нуля. Какая из
цепей записана верно:		•	•
	б) вторая;	в) обе;	г) ни одна.
, <u>-</u>	· -		электролита увеличивается с ростом
температуры. Это обуслов.			1
а) изменением мех		_	
б) снижением кине			
в) изменением диэ		•	
15. В каких растворителях			аномально высокой
электропроводностью:			
а) протофильных;	б) п	ротогенных;	в) апротонных.
, 1	,	•	, <u>-</u>
16. Какое из условий выбо является верным:	ра стандартного	состояния для	компонентов раствора электролита
a) $a_{9}^{0} \neq a_{+}^{0} = a_{-}^{0};$		б) $\mathbf{a}_{\vartheta}^{0} =$	$a_{+}^{0} \neq a_{-}^{0};$
$B) a_{3}^{0} = a_{+}^{0} = a_{-}^{0};$		$rac{a}_{\Theta}^{0} \neq$	$a_{+}^{0} \neq a_{-}^{0}$.
17. Согласно общепринято	й классификаці	ии электродных	систем электродом I рода является:
			$Cu^{2+} Cu^{+};$ $\Gamma) Ag^{+} Ag.$
			ектрода полагают равным нулю при:
a) T=0 K		T=298 K	в) любых Т.
19. Константа гидролиза с	оли слабой кис	слоты и сильног	го основания описывается соотношением
следующих табличных вел	ичин:		
a) $K_{\Gamma}=K_{W}/K_{JUCC}$;	б) $K_{\Gamma} = K_{ЛИСС} /$	K_W ; B) $K_{\Gamma} = K_W$	· $K_{\text{ДИСС}}$; г) K_{Γ} = $K_{\text{ДИСС}}$ + K_{W}
			ации двух слабых кислот К1 и К2. Сильно
_			и ту же молярную концентрацию. Если
$K_1 > K_2$, To:	r		
a) $pH_1>pH_2$;	б) рН	I ₁ <ph<sub>2;</ph<sub>	в) $pH_1=pH_2$.
21 Стандартная плотность	тока обмена 1.	лвух разных ис	онно-металлических электродов равна 10
			ризуется повышенным поляризационным
сопротивлением стадии пе		гродов характер	лизуется повышенным поляризационным
а) с низким \overline{i}_0 ;	б) с ві	ысоким $\overline{\mathbf{i}}_0$;	в) не зависит от \overline{i}_0 .
Открытые			
Критерии оценива			
 2 балла – указан вер 	ный ответ;		
 0 баллов – указан не 	еверный ответ.		
22. Чем принципиально от.	-	ческие пепи от г	концентрационных?
Различием материалов ано			1
			электрода обнаружена область
	_		м вращение электрода приводит к росту
	-		ющей в электрохимическом процессе,

12. В теории Дебая-Хюккеля средне-ионного коэффициента активности размер "ионной

атмосферы" (дебаевский радиус экранирования) с ростом концентрации ионов:

24. Всегда ли существует различие между константами равновесия, выраженными через парциальные давления и молярные концентрации?

Различий нет, если в реакции нет изменения объема.

протекающем в данной системе?

Диффузионная.

25. Найти стандартную молярную энтальпию образования аммиака на основании данных о реакциях в газовой фазе:

a)
$$2H_2 + O_2 = 2H_2O$$
, $\Delta_r H_{298a}^{\circ} = -571,68 \frac{\kappa J_{MSR}}{M_{MSR}}$;

$$δ) 4NH3 + 3O2 = 6H2O + 2N2, $\Delta_r H_{298,\delta}^{\circ} = -1530, 26 \frac{\kappa J J wc}{M G J R}.$$$

Ответ приведите в кДж/моль с точностью до целых.

Стандартную молярную энтальпию образования аммиака можно найти, пользуясь законом Гесса и комбинируя реакции: $\frac{1}{4}$ * [(a)*3-(б)]=-571,68*3-(-1530,26)=-46 (кДж/моль).

26. Константа равновесия K_p реакции $H_2 + I_2 = 2HI$ при 717 К и исходных количествах водорода и иода по 1 моль равна 46,7. Чему равна константа равновесия этой реакции, если исходные количества газов равны 2 моль?

Константа равновесия не зависит от исходных количеств реагентов. Отчет: 46,7

27. Табличное значение предельной молярной электропроводности раствора $KClO_4$ при $18^{\circ}C$ составляет 122,7 $Om^{-1}\cdot gm^2\cdot моль^{-1}$. Число переноса иона ClO_4^- равно 0,479. Найти предельную электрическую подвижность этого иона в растворе. Ответ приведите с точностью до целых в $Om^{-1}\cdot gm^2\cdot моль^{-1}$ (без указания единиц измерения).

Подвижность равна произведению числа переноса иона на молярную электропроводность: $0,479*122,7=59~(Om^{-1}\cdot дм^2\cdot моль^{-1})$

28. Вычислить $E^0_{\mathrm{O}_2,\mathrm{H}_2\mathrm{O}_2|\mathrm{Pt}}$ для реакции (1) $\mathrm{O}_2+2\mathrm{H}_3\mathrm{O}^++2e^-=\mathrm{H}_2\mathrm{O}_2+2\mathrm{H}_2\mathrm{O},$

если стандартные электродные потенциалы для реакций (2) $O_2 + 4H_3O^+ + 4e^- = 6H_2O^-$

и (3)
$$H_2O_2 + 2H_3O^+ + 2e^- = 4H_2O$$
 составляют соответственно: $E^0_{O_2,H_2O|Pt} = 1,229$ В;

$$E_{\rm H_2O_2, H_2O|Pt}^0 = 1,776 \text{ B}.$$

Ответ приведите в милливольтах с точностью до целых (не указывая единицы измерений).

- Стандартный потенциал можно рассчитать, комбинируя вначале энергии Гиббса реакций для получения искомой: (1) = (2)-(3). Учитывая основное уравнение электрохимической термодинамики, запишем: -2FE(1) = -4FE(2)-(-2FE(3)), где F число Фарадея. Отсюда E(1) = 2E(2)-E(3) = 2*1,229-1,776=0,682 (B) = 682 мВ.
- 29. Стандартный потенциал кадмиевого электрода равен -403 мВ. Какое значение потенциал кадмиевого электрода принимает в растворе с активностью ионов кадмия a(Cd2+) = 1 ? Ответ приведите в милливольтах с точностью до целых (не указывая единицы измерений).
- -403 мВ, так как стандартный потенциал это потенциал при единичной активности потенциалопрееляющих ионов, в данном случае ионов кадмия.
- 30. Стандартный потенциал медного электрода равен 0,34 В. Стандартный потенциал хлоридсеребряного электрода равен 0,2 В. Какой электрод является катодом в электрохимической цепи, составленной из медного и хлоридсеребряного электродов в стандартных условиях?

Медный, так как катодом является электрод с более положительным (менее отрицательным) потенциалом.

- 31. Стандартный потенциал цинкового электрода равен -0,66 В. Стандартный потенциал хлоридсеребряного электрода равен 0,2 В. Укажите полуреакцию, которая будет самопроизвольно протекать на аноде электрохимической цепи, составленной из цинкового и хлоридсеребряного электродов, в стандартных условиях
- В данной цепи анодом является цинковый электрод, так как его потенциал отрицательнее. Учитывая, что на аноде протекает реакция окисления полуреакцию следует записать так: $Z_n = Zn^{2+} + 2e^-$

Ключи для ПК-1

Вопросы	1	2	3	4	5	6	7	8	9
---------	---	---	---	---	---	---	---	---	---

Ответы	В	A	Б	Б	В	A	Γ	A	Б
Вопросы	10	11	12	13	14	15	16	17	18
Ответы	В	Γ	В	A	Б	В	В	Γ	В
Вопросы	19	20	21	22	23	24	25	26	27
Ответы	A	Б	A	различи ем материа лов анода и катода; протека нием химичес кой реакции	диффузио нная	Различий нет, если в реакции нет изменени я объема	-46	46,7	59
Вопросы	28	29	30	31					
Ответы	682	-403	медны й	$Zn = Zn^{2+} + 2e^{-}$					